

December 19, 2011

Mr. Guy Pearce Full Delivery Supervisor Ecosystem Enhancement Program 2728 Capital Blvd., Suite 1H 103 Raleigh, North Carolina 27604

Subject: Year 3 Monitoring Report for Stream Mitigation of Beaverdam Creek SCO# D06054-C

Dear Guy,

On behalf of Wetlands Resource Center, EMH&T Inc. is pleased to submit the Year 3 Monitoring Report for Beaverdam Creek (SCO# D06054-C). This report contains data from the vegetation monitoring, conducted in September 2011, and data from the stream monitoring, completed in May 2011. Three hard copies and one electronic copy of the document are being provided. Questions regarding this monitoring report may be directed to Cal Miller of Wetlands Resource Center at (614) 864-7511 or me at (614) 775-4507. We appreciate your willingness to work with us on this report.

Sincerely,

EVANS, MECHWART, HAMBLETON & TILTON, INC.

Megan F. Wolf

Environmental Scientist

Enclosure

Copies: Cal Miller, WRC

Year 3 Monitoring Report for Stream Restoration of Beaverdam Creek and Unnamed Tributaries

Union County, NC SCO # D06054-C

Prepared for:
NCDENR – EEP
2728 Capital Blvd, Suite 1H 103
Raleigh NC 27604

Submitted: December, 2011

Prepared by:

Wetlands Resource Center

3970 Bowen Road Canal Winchester, Ohio 43110 Project Manager: Cal Miller P: (614) 864-7511 F: (614) 866-3691

And

EMH&T, Inc.

5500 New Albany Road Columbus, Ohio 43054 Project Manager: Miles F. Hebert, PE

P: (614) 775-4205 F: (614) 775-4802 Main: (614) 775-4500

Table of Contents

I.	Exec	utive Summary
II.	Proje A. B. C.	Location and Setting Project Structure, Mitigation Type, Approach and Objectives Project History and Background
	D.	Monitoring Plan View
ш.	Proje	ect Condition and Monitoring Results15
	A.	 Vegetation Assessment Soil Data Vegetative Problem Areas Vegetative Problem Areas Plan View Stem Counts Vegetation Plot Photos
	В.	Stream Assessment 1. Hydrologic Criteria 2. Stream Problem Areas 3. Stream Problem Areas Plan View 4. Stream Problem Areas Photos 5. Fixed Station Photos 6. Stability Assessment 7. Quantitative Measures
IV.	Meth	odology25
List o	f Tab	les
Table Table Table Table Table	II. III. IV. V. VII. VIII. IX. XI. XII.	Project Structure Table Project Mitigation Objectives Table Project Activity and Reporting History Project Contact Table Project Background Table Preliminary Soil Data Vegetative Problem Areas Stem Counts for Each Species Arranged by Plot Verification of Bankfull Events Stream Problem Areas Categorical Stream Feature Visual Stability Assessment Baseline Geomorphic and Hydraulic Summary Baseline Geomorphic and Hydraulic Summary – All Cross Sections

List of Appendices

Appendix A Vegetation Raw Data

- 1. Vegetation Monitoring Plot Photos
- 2. Vegetation Data Tables
- 3. Vegetation Problem Area Photos
- 4. Vegetation Problem Area Plan View

Appendix B Geomorphologic Raw Data

- 1. Fixed Station Photos
- 2. Table B1. Qualitative Visual Stability Assessment
- 3. Cross Section Plots
- 4. Longitudinal Plots
- 5. Pebble Count Plots
- 6. Bankfull Event Photos
- 7. Stream Problem Areas Photos
- 8. Stream Problem Area Plan View

I. EXECUTIVE SUMMARY

The Beaverdam Creek stream restoration project is located near the town of Wingate, Union County, North Carolina. Prior to restoration, active use of the land for cattle grazing resulted in impaired, channelized, eroding, incised and entrenched stream channels. The project reaches include the restoration of 460 linear feet of the Beaverdam Creek mainstem, 2,300 linear feet of an unnamed tributary (UT1) and 284 linear feet of a second unnamed tributary (UT2). Restoration of the project streams, completed during March 2009, provided the desired habitat and stability features required to improve and enhance the ecologic health of the streams for the long-term. The following report documents the Year 3 Annual Monitoring for this project.

Vegetative monitoring was completed in September 2011 following the Carolina Vegetation Survey methodology. Stem counts completed at eight (8) vegetation plots show an average density of 552 stems per acre for the site. This number is up slightly from the Year 2 average of 542 stems/acre and down slightly from the Year 1 average of 587 stems/acre. In Year 3, all plots had stem densities meeting the minimum requirement. Additionally, a large number of recruit stems were found in each plot. A few vegetative problem areas of low concern were noted in the project area, included scattered populations of problematic species and sparse vegetative cover. Although not impacting the survival of the woody vegetation, the problematic species has been and will continue to be proactively managed by herbicide treatment. No maintenance is required for the areas of sparse vegetation at this time.

Monitoring of the streams identified some problem areas along UT1 and UT2. The banks of a few of the outside meander bends are steep, with vegetation not fully established to stabilize the slopes. Vegetation is increasing in density in these areas, however, and is forming a more stabilizing root mass that will help to stabilize bank sloughing. These areas are considered low concern at this time. They will be watched in order to catch any erosion problems that may occur before vegetation becomes fully established along these slopes. Areas of instability were not observed along the Beaverdam Creek Mainstem. None of the problem areas warrant maintenance at this time.

The visual stream stability assessment revealed that the majority of stream features are functioning as designed and built on the Beaverdam Creek mainstem and unnamed tributaries. Dimensional measurements of the monumented cross-sections remain stable when compared to as-built conditions. Comparison with the Year 2, Year 1 and As-Built long-term stream monitoring profile data show stability with minimal change from as-built conditions. The substrate of the constructed riffles on all project reaches has settled into particle distributions more suitable to that of the designed channel, with median particle sizes in the coarse gravel category for the mainstem and in the very coarse gravel category for both UT1 and UT2. Based on the crest gage network installed on the project reaches, three bankfull events have been recorded since construction was completed. A new event occurred in the spring of 2011 and is described in Table IX.

The following tables summarize the geomorphological changes along the restoration reaches for each stream.

Beaverdam Creek Mainstem

Parameter	Pre-Restoration	As-built	Year 1	Year 2	Year 3
Length	416 ft	460 ft	460 ft	460 ft	460 ft
Bankfull Width	11.2 ft	18.5 ft	17.9 ft	17.5 ft	16.4 ft
Bankfull Max Depth	1.1 ft	2.3 ft	2.1 ft	2.0 ft	1.1 ft
Width/Depth Ratio	9.2	18.4	17.6	16.4	15.2
Entrenchment Ratio	3.7	7.4	7.5	7.6	8.0
Bank Height Ratio	1.6	1	1	1	1
Sinuosity	1.1	1.5	1.5	1.5	1.5

Unnamed Tributary 1

Parameter	Pre-Restoration	As-built	Year 1	Year 2	Year 3
Length	1,867 ft	2,300 ft	2,300 ft	2,300 ft	2,300 ft
Bankfull Width	11.2 ft	11.5 ft	10.8 ft	10.3 ft	11.5 ft
Bankfull Max Depth	1.2 ft	1.8 ft	1.6 ft	1.8 ft	1.8 ft
Width/Depth Ratio	15	15	13.5	15.5	15.2
Entrenchment Ratio	2.7	8.7	8.9	9.2	8.4
Bank Height Ratio	1.8	1	1	1	1
Sinuosity	1.1	1.5	1.5	1.5	1.5

Unnamed Tributary 2

Parameter	Pre-Restoration	As-built	Year 1	Year 2	Year 3
Length	203 ft	284 ft	284 ft	284 ft	284 ft
Bankfull Width	4.9 ft	6.7 ft	6.4 ft	6.9 ft	7.0 ft
Bankfull Max Depth	1.0 ft	1.1 ft	1.0 ft	1.0 ft	0.9 ft
Width/Depth Ratio	8.3	11.3	11.7	15.4	14.3
Entrenchment Ratio	4.3	13.6	6.8	11.9	5.1
Bank Height Ratio	2.1	1	1	1	1
Sinuosity	1.0	1.5	1.5	1.5	1.5

II. PROJECT BACKGROUND

A. Location and Setting

The project is located northwest of the intersection of White Store Road (SR 1003) and Snyder Store Road (SR 1945), 3.8 miles south of the town of Wingate, Union County, North Carolina, as shown on **Figure 1**. The project includes restoration activities along Beaverdam Creek mainstem and two unnamed tributaries, designated UT1 and UT2.

The directions to the project site are as follows:

From Monroe, North Carolina, drive east on US-74. Approximately 3.5 miles east of Monroe, make a slight right turn onto US-601 and travel for 4.1 miles. Turn left at Hinson Street/McRorie Road (NC-1952) and travel 0.6 mile then turn right at Old Pageland Monroe Road (NC-1941) and go 0.3 mile. Turn left at Bivens Street/Nash Road (NC-1954) and travel 1.3 miles. Turn right at White Store Road (NC-1003) and go approximately 0.6 mile. Turn left onto Snyder Store Road (NC-1945) and arrive at the site. The project is located on properties owned by Mrs. Betty H. Parker. The Betty Parker residence is located at 1822 Snyder Store Road, Wingate, NC 28174. As a courtesy to the property owners, please inform Mrs. Parker when you are conducting at field visit along the restored project stream reaches.

B. Project Structure, Mitigation Type, Approach and Objectives

Pre-restoration land use surrounding the project streams was active cattle pasture land. Historic stream relocation, channelization and cattle intrusion were the primary causes leading to instability along each of the project reaches. Cattle had unrestricted access to the project stream reaches for watering and, in areas where established riparian canopy corridors exists, cattle accessed the project reaches for shade. The unstable streambanks contributed significant quantities of sediment and nutrient laden runoff from the project stream reaches into the larger Beaverdam Creek and Lanes Creek watersheds due to head cutting and bank destabilization attributed to hoof-shear.

The upper two-thirds of the UT1 reach and the entire UT2 reach within the project boundaries had sparse riparian vegetation along their stream corridors. Vegetation along the existing stream corridors was dysfunctional with respect to bank stabilization, nutrient uptake and sediment removal from overland runoff. The approximate lower one-third of the UT1 and Beaverdam Creek mainstem reaches have relatively narrow, pre-existing established hardwood forested riparian corridors. However, these corridors exhibited severe denuding of the understory, shrub and herbaceous ground cover vegetation due to cattle grazing and browsing. Typical species observed within the corridor included *Ulmus alata* (winged elm), *Quercus phellos* (willow oak), *Quercus velutina* (black oak), *Acer negundo* (boxelder), *Asimina triloba* (pawpaw), *Lonicera* species (honeysuckle), *Bignonia capreolata* (crossvine), *Carex* species (sedge), *Mitchella repens* (partridgeberry), and *Geranium* species (wild geranium).

Prior to restoration, a number of anthropogenic factors impacted the stream channel and riparian corridor along the impaired mainstem reach, resulting in its unstable deeply incised condition. In its impaired state, Beaverdam Creek maintained E channel dimensions, albeit under incised conditions. The deeply incised nature of the channel was attributed to uncontrolled cattle intrusion (herbaceous groundcover grazing, shrub vegetation browsing and hoof shear) resulting in a denuded riparian

Evans, Mechwart, Hambleton & Tilton, Inc. Engineers • Surveyors • Planners • Scientists

UNION COUNTY, NORTH CAROLINA BEAVERDAM CREEK RESTORATION

FIGURE 1: SITE VICINITY MAP N.C. ECOSYSTEM ENHANCEMENT PROGRAM

Date: December, 2011

Not To Scale

corridor and destabilized, eroding streambanks. In addition to cattle intrusion, channelization increased erosive forces acting on the streambed and channel banks during seasonal precipitation events, and bankfull and greater flows. The stream's high degree of channel incision, (BHR range 1.56 - 1.60), low sinuosity (K = 1.08), denuded and destabilized streambanks composed of stratified silty soils, and relatively steep profile slope (0.0169 ft/ft, or 89.2 ft/mi) had resulted in a deeply incised, unstable channel with a high erosion potential. It was estimated 21 cubic yards per year (or 28 tons per year) of sediment was being eroded from the unstable, vertical to undercut streambanks along the mainstem impaired reach into the larger Beaverdam Creek watershed. This estimate represents a bank erosion rate of 0.5 ft/yr.

A number of anthropogenic factors impacted the stream channel and riparian corridor along the UT1 reach, resulting in its unstable deeply incised condition. In its impaired state along the lower forested reach, UT1 had C4 channel morphology, albeit under incised conditions. The deeply incised nature of the channel was attributed to uncontrolled cattle intrusion (herbaceous groundcover grazing, shrub vegetation browsing and streambank hoof shear) resulting in a denuded riparian corridor and destabilized, eroding streambanks. The stream's high degree of channel incision (BHR range 1.41 - 1.76), low sinuosity (K = 1.16), denuded and destabilized streambanks, and profile slope (0.0058 ft/ft, or 30.6 ft/mi) had resulted in a deeply incised, unstable channel with high streambank and streambed erosion potential. It was estimated 67 cubic yards per year (or 87 tons per year) of sediment was being eroded from the unstable streambanks along the forested segment of UT1 impaired reach. This estimate represents a bank erosion rate of 0.5 ft/yr.

Upstream of the forested corridor on UT1, pre-existing bank erosion hazard indices were not calculated. This segment of the impaired reach was significantly different from the forested reach. Aggradation was the dominant depositional process as the land use was open pasture land with non-uniform channel geometry, modified by hoof shear together with low profile gradient. In its impaired state, the upper UT1 stream segment lacked suitable features for aquatic habitat.

The reach along UT2 was also impacted by a number of anthropogenic factors, resulting in an unstable deeply incised condition. In its impaired state, UT2 exhibited E4 channel morphology, under incised conditions. The deeply incised nature of the channel was attributed to uncontrolled cattle intrusion, herbaceous groundcover grazing, shrub vegetation browsing and streambank hoof shear, resulting in a denuded riparian corridor and destabilized, eroding streambanks. In addition to cattle intrusion, channelization increased erosive forces acting on the streambed and channel banks during seasonal precipitation events, bankfull and greater flows. The stream's high degree of channel incision (BHR range 1.80-2.12), low sinuosity (K = 1.01), denuded and destabilized streambanks, and relatively steep profile slope (0.0192 ft/ft, or 101.4 ft/mi) had resulted in a deeply incised, unstable stream channel with a high sediment supply. It was estimated 4 cubic yards per year (or 5 tons per year) of sediment was being eroded from the unstable streambanks along the UT2 impaired reach, representing a bank erosion rate of 0.25 ft/yr.

The mitigation goals and objectives for the project streams are related to restoring stable physical and biological function of the project streams beyond pre-restoration (impaired reach) conditions. Pre-restoration conditions consisted of impaired, channelized, eroding, incised and entrenched stream channels. Nutrient and sediment loading, vegetative denuding and destabilized streambanks associated with hoof shear from uncontrolled cattle access was evident.

The specific mitigation goals and objectives proposed and achieved for the project are listed below.

- Stable stream channels with features inherent of ecologically diverse environments, with appropriate streambed features including appropriately spaced pool and riffle sequences, and riparian corridors planted with diversified, indigenous vegetation.
- Superimposed reference reach boundary conditions on the impaired project reaches in the restoration design and construction of improvements.
- Constructed stream channels with the appropriate geometry and gradient to convey bankfull flows while entraining bedload and suspended sediment (wash load) readily available to the streams.
- Created an improved connection between the bankfull channels and their floodprone areas, with stable channel geometries, protective vegetation and jute coir fabric to prevent erosion.
- Minimized future land use impacts to project stream reaches by conveying a perpetual, restrictive conservation easement to the State of North Carolina, including stream corridor protection via livestock exclusion fencing at the surveyed and recorded conservation easement boundaries, with gates at the edge of the riparian corridor on river right and left at reserved conservation easement crossings adjacent to active pasture land.

The restoration of Beaverdam Creek mainstem, UT1 and UT2 met the project goals and objectives set forth in the restoration plan, by providing desired habitat and stability features required to enhance and provide long-term ecologic health for the project reaches. More specifically, the completed restoration project has accomplished the enhancements listed below.

Beaverdam Creek Mainstem:

- Reversed the effects of channelization using a Priority Level I restoration approach; restoration increased the width/depth ratio from 9.19 to 15.17 after 3 years of monitoring.
- Restored natural pattern to the channel alignment, increasing the sinuosity from 1.07 to 1.48, while maintaining a stable relationship between the valley slope and bankfull slope (the bankfull slope was steeper than the valley slope prior to restoration and is now less than the valley slope with the completed restoration). Stable pattern, profile and dimension were restored based on extrapolation from reference reach boundary conditions.
- Stabilized eroding streambanks by providing an appropriately sized channel with stable channel bank slopes built with a combination of embedded stone, topsoil, natural fabrics and hearty vegetative protective cover. The average Bank Height Ratio was decreased from 1.60 to 1.00 (extremely incised to stable).
- Created re-connection between the restored stream channel and the adjacent floodprone area by raising the bankfull channel to the elevation of the adjacent floodplain. The completed restoration increased the average entrenchment ratio from 3.68 to 8.01 after three years of monitoring.
- Created instream aquatic habitat features, including appropriately spaced pool and riffle sequences, and a stable transition of the mainstem reach thalweg to the invert of the downstream culvert carrying Beaverdam Creek under Snyders Store Road.
- Revegetated the riparian corridor with indigenous canopy, mid-story, shrub and herbaceous ground cover, preserving existing forested riparian corridors where present.

Unnamed Tributary 1 (UT1):

- Reversed the effects of channelization through a combination of Priority Level I and Priority Level II restoration techniques. The average width/depth ratio of the restored UT1 project reach is 15.21 in Year 3. Stable pattern, profile and dimension were restored based on extrapolation from reference reach boundary conditions.
- Restored natural pattern to the channel alignment, increasing stream channel sinuosity from 1.14 to 1.45.
- Stabilized eroding streambanks by providing appropriately sized channels with stable streambank slopes. The average Bank Height Ratio has been reduced from 1.76 to 1.00 (extremely incised to stable).
- Created re-connection between the restored stream channel and the adjacent floodprone area by a combination of raising the stream bed and/or lowering the adjacent floodplain. The completed restoration increased the average entrenchment ratio from 2.74 to 8.43 in Year 3.
- Created instream aquatic habitat features including appropriately spaced pool and riffle sequences with a stable transition of the UT1 reach thalweg at its confluence with Beaverdam Creek.
- Revegetated the riparian corridor with indigenous canopy, mid-story, shrub and herbaceous ground cover, preserving existing forested riparian corridors where present.

Unnamed Tributary 2 (UT2):

- Reversed the effects of channelization through a combination of Priority Level I and Priority Level II restoration techniques. The width/depth ratio of the restored UT2 project reach was increased from 8.32 to 14.27 after three years of monitoring. Stable pattern, profile and dimension were restored based on extrapolation from reference reach boundary conditions.
- Restored natural pattern to the channel alignment, increasing stream channel sinuosity from 1.02 to 1.49.
- Stabilized eroding streambanks by providing an appropriately sized channel with stable streambank slopes. The average Bank Height Ratio has been reduced from 2.12 to 1.00 (extremely incised to stable).
- Created re-connection between the restored stream channel and the adjacent floodprone area by a combination of raising the stream bed and/or lowering the adjacent floodplain. The completed restoration increased the average entrenchment ratio from 4.33 to 5.08.
- Created instream aquatic habitat features including appropriately spaced pool and riffle sequences, with a stable transition of the UT2 reach thalweg at its confluence with UT1.
- Revegetated the riparian corridor with indigenous canopy, mid-story, shrub and herbaceous ground cover.

Information on the project structure and objectives is included in Tables I and II.

	Structure Table ation / EEP Project No. D06054-C
Project Segment/Reach ID	Linear Footage or Acreage
Beaverdam Creek Mainstem	460 ft
UT1	2,300 ft
UT2	284 ft
TOTAL	3,044 ft

В	Table II. Project Mitigation Objectives Table Beaverdam Creek Stream Restoration / EEP Project No. D06054-C										
Project Linear Segment/ Footage or Mitigation Mitigation Reach ID Mitigation Type Acreage Ratio Units Comment											
Beaverdam Creek Mainstem	Priority Level I Restoration	460 ft	1	460 SMU's	Restore dimension, pattern, and profile						
UT1	Priority Level I/II Restoration	2,300 ft	1	2,300 SMU's	Restore dimension, pattern, and profile						
UT2	Priority Level I/II Restoration	284 ft	1	284 SMU's	Restore dimension, pattern, and profile						
TOTAL		3,044 ft		3,044 SMU's							

C. Project History and Background

Project activity and reporting history are provided in Table III. The project contact information is provided in Table IV. The project background history is provided in Table V.

Table III. Project Activity and Reporting History Beaverdam Creek Stream Restoration / EEP Project No. D06054-C									
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery						
Restoration plan	Apr 2007	Jul 2007	Jan 2008						
Final Design - 90% ¹	:==	Tit.							
Construction	Dec 2008	N/A	Nov 2008						
Temporary S&E applied to entire project area ²	Dec 2008	N/A	Nov 2008						
Permanent plantings	Mar 2009	N/A	Apr 2009						
Mitigation plan/As- built	Jul 2009	April 2009 (vegetation) December 2008 (geomorphology)	Apr 2009						
Year 1 monitoring	2009	Sep 2009 (vegetation) Jul 2009 (geomorphology)	Nov 2009						
Year 2 monitoring	2010	Sep 2010 (vegetation) May 2010 (geomorphology)	Dec 2010						
Year 3 monitoring	2011	Sep 2011 (vegetation) May 2011 (geomorphology)	Dec 2011						
Year 4 monitoring	2012								
Year 5 monitoring	2013								

^IFull-delivery project; 90% submittal not provided.

²Erosion and sediment control applied incrementally throughout the course of the project.

N/A: Data collection is not an applicable task for these project activities.

Table IV. Project Contact Table Beaverdam Creek Stream Restoration / EEP Project No. D06054-C						
Designer	Evans, Mechwart, Hambleton & Tilton, Inc. 5500 New Albany Road, Columbus, OH 43054					
Construction Contractor	South Mountain Forestry 6624 Roper Hollow, Morganton, NC 28655					
Monitoring Performers	Evans, Mechwart, Hambleton & Tilton, Inc. 5500 New Albany Road, Columbus, OH 43054					
Stream Monitoring POC	Jud M. Hines, EMH&T					
Vegetation Monitoring POC	Megan F. Wolf, EMH&T					

Table V. Project Background	
Beaverdam Creek Stream Restoration / EEP	Project No. D06054-C
Project County	Union
*	Mainstem-0.491 sq mi
	UT1-0.2375 sq mi
Drainage Area	UT2-0.0765 sq mi
Drainage Impervious Cover Estimate	0.48%
	Mainstem, UT1-2nd
Stream Order	UT2-1st
Physiographic Region	Piedmont
Ecoregion	Carolina Slate Belt
Rosgen Classification of As-built	C4
	Chewacla silt loam,
Dominant Soil Types	Cid channery silt loam
Reference Site ID	Davis Branch
USGS HUC for Project and Reference	03040105
NCDWQ Sub-basin for Project and Reference	03040105081030
· ·	Project-WS-V
NCDWQ Classification for Project and Reference	Reference-C
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a	
303d listed segment?	Yes
Reason for 303d listing or stressor	Sediment, agriculture
% of project easement fenced	95%

D. Monitoring Plan View

The monitoring plan view is included as Figure 2.

UNION COUNTY, NORTH CAROLINA FIGURE 2 - MONITORING PLAN VIEW FOR

BEAVERDAM CREEK AND UNNAMED TRIBUTARIES NC EEP PROJECT NO. D06054-C

2011

FIGURE 2 - MONITORING PLAN
BEAVERDAM CRE
AND UNNAMED TRIBU
NO EEP PROJECT NO. DOST

III. PROJECT CONDITION AND MONITORING RESULTS

A. Vegetation Assessment

1. Soil Data

Soil information was obtained from the NRCS Soil Survey of Union County, North Carolina (USDA NRCS, January, 1996). The soils along the mainstem of Beaverdam Creek and along the lower 300-feet reach of UT1 within the project area include the Chewacla silt loam, 0 to 2 percent slopes, frequently flooded. This map unit consists mainly of very deep, nearly level, somewhat poorly drained soils developed on floodplains. It is mostly present on broad flats along major streams and rivers and on narrow flats along minor creeks and drainageways. Typically the surface layer is brown silt loam approximately seven inches thick. The subsoil is 45 inches thick. On site, the Chewacla unit is mapped adjacent to the Goldston soils. Where the Chewacla unit occurs adjacent to areas of Goldston soils, small areas of soils encounter bedrock at a depth of less than 60 inches below ground surface. Contrasting inclusions make up about 15 percent of this mapped unit.

The upper reach of UT1 and the entire length of UT2 is mapped Cid channery silt loam, 1 to 5 percent slopes. This map unit consists mainly of moderately deep, moderately well drained and somewhat poorly drained, nearly level and gently sloping Cid and similar soils on flats, on ridges in the uplands, in depressions and in headwater drainageways. Typically, the surface layer is light brownish gray channery silt loam four inches thick. The subsurface layer is a pale yellow channery silt loam 5 inches thick. The subsoil is 18 inches thick. Weathered, fractured bedrock is encountered at a depth of about 27 inches. Hard, fractured bedrock is encountered at a depth ranging from 20 to 40 inches.

Data on the soils series found within and near the project site is summarized in Table VI.

Table VI. Preliminary Soil Data Beaverdam Creek Stream Restoration / EEP Project No. D06054-C										
Max. Depth % Clay on % Organic Series (in.) Surface K ¹ T ² Matter										
Chewacla silt loam, 0 to 2 percent slopes (ChA)	72	12-27	0.28	5	1-4					
Cid channery silt loam, 1 to 5 percent slopes (CmB)	32	12-27	0.32	2	0.5-2					
Goldston-Badin complex, 2 to 8 percent slopes (GsB)	27	5-15	0.05	1	0.5-2					

¹Erosion Factor K indicates the susceptibility of a soil to sheet and rill erosion, ranging from 0.05 to 0.69. ²Erosion Factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity, measured in tons per acre per year.

2. Vegetative Problem Areas

Vegetative Problem Areas are defined as areas either lacking vegetation or containing populations of exotic vegetation. Each problem area identified during each year of monitoring is summarized in Table VII. Photographs of the vegetative problem areas are shown in Appendix A.

Table VII. Vegetative Problem Areas Beaverdam Creek Stream Restoration / EEP Project No. D06054-C									
Feature/Issue	Station # / Range	Probable Cause	Photo #						
	2+50 UT2		VPA 1						
	1+10, 3+00-6+00,		VPA 3						
Bare Banks	17+80 UT1	Unknown: could be poor, rocky soil	VIAS						
	14+00-17+50,								
	19+50-20+00 UT1								
	(and small,								
Invasive	scattered patches	Microstegium: encroachment from							
Population	along mainstem)	outside source	VPA 2						

As in Year 2, a few areas along the tributaries of Beaverdam Creek were noted to have low overall herbaceous cover in the riparian corridor, leading to noticeable bare banks. These areas are small patches near the stream channel and are most likely caused by poor, rocky soil. The areas mentioned above are considered as a low concern at this time.

A few areas with a population of Japanese stiltgrass (*Microstegium vimineum*) were noted during 2010 (Year 2) monitoring. *Microstegium vimineum* continues to infiltrate bare ground along UT1and the population has grown in Year 3 to cover the channel and/or areas of the riparian corridor between stations 14+00 and 17+50, as well as between stations 19+50 and 20+00. This species is common along streamsides and ditches, and at the edges of forests and damp fields, and as such, was likely present before the onset of restoration activities. As further evidence of a pre-existing population, the locations where this species is present are those areas that were not impacted during restoration of the stream channels.

In the Year 2 report it was hypothesized that the vegetation from the permanent seeding would spread to fill in sparsely covered areas. At the time of 2010 vegetation monitoring the stiltgrass did not appear to be impacting the survival of woody stems and was therefore considered a problem area of low concern. This observation remains the same in Year 3. Proactive management in the form of herbicide treatments were conducted in the fall of 2009, spring of 2010. Two treatments were applied in Year 3; one application in the spring and the other in the fall of 2011. Because it appears that stiltgrass in not responding to herbicide treatment, a more intensive herbicidal spraying effort will be conducted in the spring and fall of 2012 if the invasive population continues to be a concern. These treatments will help to limit the impact of this species on the vegetative success of the project.

3. Vegetation Problem Area Plan View

The location of each vegetation problem area is shown on the vegetative problem area plan view included in Appendix A. Each problem area is color coded with yellow for areas of low concern (areas to be watched) or red for high concern (areas where maintenance is warranted).

4. Stem Counts

A summary of the stem count data for each species arranged by plot is shown in Table VIII. Table VIIIa provides the survival information for planted species, while Table VIIIb provides the total stem count for the plots, including all planted and recruit stems. This data was compiled from the

information collected on each plot using the CVS-EEP Protocol for Recording Vegetation, Version 4.0. Additional data tables generated using the CVS-EEP format are included in Appendix A. All vegetation plots are labeled as VP on Figure 2.

	Table VIIIa. Stem counts for each species arranged by plot - planted stems. Beaverdam Creek Stream Restoration / EEP Project No. D06054-C												
Charies	1	2	3	Plot		6	7	8	Year 0 Totals	Year 1 Totals	Year 2 Totals	Year 3 Totals	Survival %
Species	-								Totals	I Otals	Totals	101113	7.0
Shrubs									12	1.1	12	12	100
Alnus serrulata	1		4	1	2	2	1	1	13	11	12		
Aronia arbutifolia		1_	1_		3				7	7	6	5	83
Cephalanthus occidentalis		3	6	6	5				32	30	30	20	67
Cornus amomum		3		4					6	6	6	7	117
Trees			,										
Diospyros virginiana							11		2	2	2	11	550
Fraxinus pennsylvanica	1								3	0	1	1	100
Liriodendron tulipifera	2	2	1						7	.5	5	5	100
Platanus occidentalis	5	7	2	10		1	1	9	40	32	34	35	103
Quercus bicolor								2	2	2	1	2	200
Ouercus coccinea						1			0	0	0	I	NA
Quercus palustris							1	2	4	4	3	3	100
Taxodium distichum	3					3			6	3	6	6	100
Ulmus rubra						1			2	2	1	1	100
Year 3 Totals	12	16	14	21	10	8	14	14	124	104	107	109	102
Live Stem Density	486	648	567	851	405	324	567	567					, t
Average Live Stem Density				552			7 0						

Beaverd	am Cro	ek St	ream l	Restor	ation	/ EE]	P Proj	ect No	. D06054	-C	
		,		Plo	ts				Year 1	Year 2	Year 3
Species	1	2	3	4	5	6	7	8	Totals	Totals	Totals
Shrubs											
Alnus serrulata	1		4	1	2	2	1		12	12	11
Aronia arbutifolia		1	1		3				7	6	5
Cephalanthus occidentalis		3	7	6	5				30	31	21
Cornus amomum		3		4					6	6	7
DON'T KNOW	3							1	0	0	4
Sambucus canadensis			3				2		4	4	5
Trees											
Diospyros virginiana							11		2	2	11
Fraxinus pennsylvanica	16	15	39	1				18	9	44	89
Liquidambar styraciflua	32	15	16	1	10	10	100		142	267	184
Liriodendron tulipifera	2	2	2	1	1			9	7	6	17
Platanus occidentalis	6	7	2	11		1	1_	48	37	36	76
Quercus alba								2	0	1	2
Quercus bicolor								1	2	1	1
Quercus coccinea						1		12	0	0	13
Quercus palustris							1	12	4	4	13
Taxodium distichum	3					3			6	6	6
Ulmus rubra						1		1	2	2	2
Year 3 Totals	63	46	74	25	21	18	116	104	270	428	467
Live Stem Density	2552	1863	2997	1013	851	729	4698	4212			

The average stem density of planted species for the site exceeds the minimum criteria of 320 stems per acre after three years. Every plot has a stem density above the minimum. This is an improvement over Year 2 when plot 6 did not meet the minimum criteria. A large number of recruit stems (467 total) were found in all plots in Year 3. The recruit stems more than quadruple the total stem density across the site, raising the total by 328%.

5. Vegetation Plot Photos

Vegetation plot photos are provided in Appendix A.

B. Stream Assessment

1. Hydrologic Criteria

Two crest-stage stream gages were installed along the project, on near station 5+50 along UT1 and the other near station 3+80 on Beaverdam Creek Mainstem and 22+75 on UT1, at the confluence of the two reaches. The locations of the crest-stage stream gages are shown on the monitoring plan view (Figure 2). Bankfull events were recorded during Year 3, as documented in Table IX.

	Table IX. Veri	fication of Bankfull Events	
Date of Data Collection	Date of Occurrence	Method	Photo #
4/8/2009	2/28/09-3/1/09*	Crest gage at 5+50 on UT1	BF 1
4/8/2009	2/28/09-3/1/09*	Crest gage at 3+80 on Mainstem and 22+75 on UT1	BF 4
9/19/2010	1/25/2010, 02/5/2010 or 07/12/2010*	Crest gage at 5+50 on UT1	BF 2
9/19/2010	1/25/2010, 02/5/2010 or 07/12/2010*	Crest gage at 3+80 on Mainstem and 22+75 on UT1	BF 5
5/16/2011	3/10/2011 or 3/30/2011	Crest gage at 5+50 on UT1	BF 3
5/16/2011	3/10/2011 or 3/30/2011	Crest gage at 3+80 on Mainstem and 22+75 on UT1	BF 6

^{*}Date is approximate; based on a review of recorded rainfall data

When the crest gages were read in May 2011 for Year 3, the crest gage furthest upstream on UT1 registered a bankfull event at a height of 3/4" above the bottom of the crest gage. The crest gage at the confluence of the mainstem of Beaverdam Creek and UT1 also documented a bankfull event, at a height of 1" above the bottom of the crest gage. These crest gages are set at or above the bankfull elevation of each stream channel. Photographs of the crest gages are shown in Appendix B.

The most likely dates for the bankfull event(s) are estimated to be after the rain events that occurred on March 10 and March 30, 2011. These dates correspond to elevated gage heights and higher peak discharge events, as recorded at USGS Gage 02124692 along Goose Creek at Fairview, NC, which lies approximately 10 miles north of Monroe and 16 miles northwest of Wingate, NC. As these are the largest precipitation events of significance since the completion of Year 2 monitoring, it is likely that at least one of these lead to the bankfull event recorded by both crest gages.

On March 10, 2011, mean gage height at the Goose Creek station measured 2.44 feet and maximum gage height measured 3.58 feet. On that day, mean daily discharge was 140 ft³/s and maximum daily discharge was 266 ft³/s. On March 30, 2011, mean gage height measured 2.45 feet and maximum gage height measured 4.66 feet. On that day, mean daily discharge was 154 ft³/s and maximum daily discharge was 424 ft³/s. The addition of these Year 3 bankfull event verifications brings the total for project bankfull events to at least three in three consecutive years. The 2011 discharges and gage heights recorded at the Fairview station are shown on the hydrographs below.

USGS Surface-Water Daily Data for North Carolina http://waterdata.usgs.gov/nc/nwis/dv?

USGS Surface-Water Daily Data for North Carolina http://waterdata.usgs.gov/nc/nwis/dy?

2. Stream Problem Areas

A summary of the areas of concern identified during the visual assessment of the stream for Year 3 is included in Table X.

В		e X. Stream Problem Areas am Restoration / EEP Project No. D06054	4-C
Feature Issue	Station Numbers	Suspected Cause	Photo Number
	0+75 to 0 +90 UT1	Unvegetated and eroding banks - concern for future stability if vegetation does not develop	SPA 2
Bank Scour/	2+75 to 2+90 UT1	Unvegetated and eroding banks - concern for future stability if vegetation does not develop	
Unvegetated Banks	4+05 to 4+20 UT1	Unvegetated and eroding banks - concern for future stability if vegetation does not develop	SPA 1
	1+60 UT2	Unvegetated and eroding banks - concern for future stability if vegetation does not develop	SPA 3

As in Year 2, areas of instability were not observed along the Beaverdam Creek Mainstem in Year 3. The only type of problem area noted along UT1 and UT2 is isolated to a few outside meander bends along these tributaries. The banks of the outside bends do not have enough established vegetation to stabilize the slopes. It appears that some minor erosion is occurring at the stations listed in Table X. These areas are considered of low concern at this time because they are not actively eroding beyond the minor sloughing of loose soil. The bend on UT1 between stations 0+75 and 0+90 has begun to slough. Because vegetation continues to increase in density on this bank, immediate action is not warranted. Overall, the density of vegetation has increased for all stations listed in the table above. The exception is station 1+60 on UT2. Year 4 monitoring will bring another assessment of the vegetation growth on this bank and any persisting sloughing. Vegetation colonization and growth will be closely monitored in 2012 in order to ascertain any trends with regards to increased or decreased bank stabilization along UT1 and UT2.

If necessary, recommendations regarding bank stabilization remediation will be made after Year 4 monitoring. No remedial maintenance is scheduled at this time. These areas are noted in order that they be watched to catch any erosion problems that may occur before vegetation becomes fully established along these slopes. Actively monitoring these areas will allow developing problems to be caught early and managed without the need for mechanical intervention. If erosion problems arise in these or any new areas, the outside meander bends could be stabilized using vegetative methods such as seeding and live stakes, or with a natural fiber (coconut) geotextile.

3. Stream Problem Areas Plan View

The locations of problem areas are shown on the stream problem area plan view included in Appendix B. Each problem area is color coded with yellow for areas of low concern (areas to be monitored) or red for high concern (areas where maintenance is warranted).

4. Stream Problem Areas Photos

Photographs of the stream problem areas are included in Appendix B.

5. Fixed Station Photos

Photographs were taken at each established photograph station on September 13, 2011. These photographs are provided in Appendix B.

6. Stability Assessment

The visual stream assessment was performed to determine the percentage of stream features that remain in a state of stability after the first year of monitoring. The visual assessment for each reach is summarized in Tables XIa through Table XIc. This summary was compiled from the more comprehensive Table B1, included in Appendix B. Only those structures included in the as-built survey were assessed during monitoring and reported in the tables.

Table XIa. Catego Beaverdam Creek	Stream R		/ EEP Pr			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	100%	100%	98%		
B. Pools ²	100%	100%	100%	100%		
C. Thalweg	100%	100%	100%	100%		
D. Meanders	100%	100%	100%	100%		
E. Bed General	100%	100%	100%	100%		
F. Vanes / J Hooks etc. 3	N/A	N/A	N/A	N/A		
G. Wads and Boulders ³	N/A	N/A	N/A	N/A		

Table XIb. Catego Beaverdam Creek	Stream Ro		/ EEP Pr			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	99%	99%	100%		
B. Pools ²	100%	95%	94%	94%		
C. Thalweg	100%	100%	100%	100%		
D. Meanders	100%	94%	93%	93%		
E. Bed General	100%	100%	100%	100%		
F. Vanes / J Hooks etc. 3	N/A	N/A	N/A	N/A		
G. Wads and Boulders ³	N/A	N/A	N/A	N/A		

Table XIc. Categorical Stream Feature Visual Stability Assessment Beaverdam Creek Stream Restoration / EEP Project No. D06054-C Segment/Reach: UT2

Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles ¹	100%	100%	100%	92%		
B. Pools ²	100%	100%	100%	93%		
C. Thalweg	100%	100%	100%	100%		
D. Meanders	100%	88%	92%	92%		
E. Bed General	100%	100%	100%	100%		
F. Vanes / J Hooks etc. 3	N/A	N/A	N/A	N/A		
G. Wads and Boulders ³	N/A	N/A	N/A	N/A		

¹Riffles are assessed using the longitudinal profile. A riffle is determined to be stable based on a comparison of location and elevation with respect to the as-built profile.

The Year 3 visual stream stability assessment revealed that the majority of stream features are functioning as designed and built on the Beaverdam Creek mainstem and unnamed tributaries. There was only one area of notable instability along the mainstem in Year 3. This area corresponded to a riffle that has experienced moderate erosion. On the longitudinal profile overlay located in Appendix B, it can be observed that the riffle degraded approximately 9 inches over the past year. There appear to be no other channel instabilities associated with this condition; however this area will continue to be closely monitored for future changes to the channel.

There are a few meanders along UT1 that also have minor erosion along the outer bends. One meander bend began the sloughing process in 2010. In 2011, this bend at station 0+75 to 0+90 has remained in a state of limited erosion, as mentioned in Part 2 and Table X, above, and there is evidence this sloughing issue is improving, due to increased bank vegetation (Stream Problem Area Photos, Appendix B). In addition to the meander category, there were three pools along the terminal 500 feet of UT1 that did not match the as-built condition, in regards to feature elevations (as presented in the graphs of the longitudinal profile). These pools, in the 500 linear feet before the confluence with Beaverdam mainstem, were noted to be shallower and shorter in Year 3 as compared Years 1 & 2 profile and the as-built profile. It appears that sedimentation may be occurring in the center of these pools, although all remain present and retain their essential function.

There were two categories ("pools" and "meanders") of the Visual Stability Assessment that decreased in stability from Year 2 to Year 3 for UT2. As in Year 2, erosion was limited to the meander at station 1+60. However, upon examining the longitudinal profile overlay for UT2 (Appendix B) it became apparent that there has been a trend of aggradation in the pools of this reach. This trend has continued into Year 3. All four pools along the reach have aggraded between .25 foot and .5 foot since the As-Built survey was completed. The pools remain functional, however. This aggradation is not unexpected for a stream of this size. UT2 is prone to brief periods of flash flooding followed by longer periods of with much slower water velocity. The flash flood events suspend silt and sand particles and move gravel and cobble. Because these flooding events are short-

²Pools are assessed using the longitudinal profile. A pool is determined to be stable based on a comparison of location and elevation with respect to the as-built profile and a consideration of appropriate depth.

³Those features not included in the stream restoration were labeled N/A. This includes structures such as rootwads and boulders.

lived, the sediment does not have a chance to wash out of the system and low flows settle the sediment into pools. It should be noted that, at present, the aggradation does not appear to causing a major threat to the stability of the entire reach. It will be closely monitored in Year 4 stream survey.

7. Quantitative Measures

Graphic interpretations of cross-sections, profiles and substrate particle distributions are presented in Appendix B. A summary of the baseline morphology for the site is included in Table XII and XIII and is based on the more detailed monitoring data shown in the appendix. Table XIII contains a summary of the geomorphic analysis of all monitoring cross sections, including pools and riffles. Table XII only includes a summary of riffle cross sections, plus a summary of the geomorphic analysis of the stream profile, stream pattern, various reach parameters and provides the determined Rosgen classification. These tables offer a year to year comparison of the observed and calculated geomorphic data to assess the stability of the restored stream channel. We have considered the data compiled into these tables to offer the summary conclusions presented below.

The stream pattern data provided for Years 1-3 is the same as the data provided from the As-Built survey, as pattern has not changed based on the Year 3 stream surveys and visual field assessment.

Bedform features continue to evolve along the restored reaches as shown on the long-term longitudinal profiles. Dimensional measurements of the monumented cross-sections remain stable when compared to as-built conditions. Cross section 3 (riffle) on UT1 appears to be more narrow in Years 2 and 3 when compared to Year 1 and the As-Built overlays. This, however, is simply a result of more survey shots being taken in the channel in Years 2 and 3. Dimensional measurements of this cross section are indicative of a C channel.

Riffle lengths and slopes are stable. Pool to pool spacing is representative of As-Built conditions. The comparison of the As-Built, Year 1 and Year 2 long-term stream monitoring profile data with Year 3 shows generalized stability. As mentioned in the Stability Assessment section above, on the mianstem, one riffle was observed to have experienced moderate erosion in 2011. On UT2, areas of instability centered around one eroding meander bend and aggradation of pool features. Areas of instability for UT1 were similar to the issues on UT2. Bank erosion was observed on three meander bends and stream aggradation was ovbserved along the terminal 500 feet of the project reach.

Although there were some very minor areas of bank erosion along the project reaches, remedial maintenance work is not warranted at this time. All reaches will continue to be observed in Years 4 and 5 in order to establish the trend in channel evolution for this project. Recommendations for channel correction and stabilization will be offered in Year 4, if necessary. Overall, the substrate is stable, as are the stream channel dimensions and profiles.

In Year 3, the substrate of the constructed riffles on the mainstem, UT1 and UT2 have continued to settle into the median particle distribution that would be expected after 3 years of natural channel events. Riffles on the UT1 and UT2 average a D_{50} in the very coarse gravel range. Riffles on the mainstem average a D_{50} in the course gravel range. The composite particle distributions (defined as the average of D_{50} particle values for all cross sections within each reach) for all reaches fall within the gravel range. Because of this, Beaverdam mainstem, UT1 and UT2 remain classified as C4/1 reaches.

IV. METHODOLOGY

Year 3 vegetation monitoring was conducted in September 2011 using the CVS-EEP Protocol for Recording Vegetation, Version 4.0 (Lee, M.T., Peet, RK., Roberts, S.R., Wentworth, T.R. 2006). Year 3 stream monitoring was conducted in May 2011 so as to provide close to a full year between the Year 2 and Year 3 surveys. Subsequent stream monitoring will occur in the spring of Years 4 and 5 in order to provide a full year between surveys. Vegetation monitoring will continue to be conducted in the fall of each subsequent year of monitoring, providing a full year between vegetative surveys.

								Ta Beaverd	ible XII: Bas am Creek and Station/Rea	Tributaries	Restoration	l Hydraulic S / EEP Project ation 0+00 to	No. D06054	-c										
Parameter		gional Curve I			anch Referenc			xisting Condi			Design		As-I	Built (Riffle X	S-8)	Yea	r 1 (Riffle XS-	-8)	Yea	r 2 (Riffle XS-	0	Yea	r 3 (Riffle XS-	-8)
	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median
Dimension										THE SHIP OF				1000	a eventual and	ASE OF BILL	a San and All	Out to State out II		THE RESERVE	STATE OF THE PARTY.		HE LE BOOK	HER VILLEY
Drainage Area (mi²)			0.5712			0.5712			0.4910			0.4910			0.4910			0.4910			0.4910			0.4910
BF Width (ft)			11.24			12.91			7.44			11.20			18.48			17.73			17.50			16.38
Floodprone Width (ft)						50.00			27.40			50.00			135.63			133.69			132.80			131.26
BF Cross Sectional Area (ft²)			15.03			15.65			6.05			13.68			18.48			17.91			18.76			17.71
BF Mean Depth (ft)			1.33			1.21			0.81			1.22			1.00			1.01			1.07			1.08
BF Max Depth (ft)						1.61			1.14	-		1.80			2.30			2.06			2.00			1.93
Width/Depth Ratio			8.45			10.67			9.19			9.18			18.43			17.55			16.36			15.17
Entrenchment Ratio		1				3.87			3.68			4.46			7,36			7.54			7.59			8.01
Bank Height Ratio						1.00			1.60			1.00			1.00			1.00			1.00			1.00
Wetted Perimeter (ft)			13.90			13,72			8.05			12.05			19.09			18.34			18.14			17.02
Hydraulic Radius (ft)			1.08			1.14			0.75			1.14			0.97			0.98			1.03			1.04
Pattern					ATTENDED				Value of the state of					AHOS -	= IX	SINITE OUR	15 V- 95	V-10	PARCE HOLE	THEFT	1,05	VI TO THE	1000 - 0	1.04
*Channel Beltwidth (ft)				27.80	53.00	38.00				T		50.00			50.00			50.00			50.00	T	T	50.00
*Radius of Curvature (ft)				16.40	45.30	29.40				17.00	28.00	17.00	17.00	28.00	17.00	17.00	28.00	17.00	17.00	28,00	17.00	17.00	28.00	50.00 17.00
*Meander Wavelength (ft)				80.10	116.50	99.20				59.01	93.85	72.68	59.01	93.85	72.68	59.01	93.85	72.68	59.01	93.85	72.68	59.01	93.85	72.68
*Meander Width Ratio				2.15	4.11	2.94						4.46	- 22.01	75105	2.71	32.01	22.02	2.82	37.01	95.05	2.86	39.01	93.63	3.05
Profile		3.00	***	100 100 100				mer on	A			11.10		2150 THE	77.0	Dec 1 2 2 2	01-04-04	2.02	The second	I SO LONG TO	2.00	Control of the Control	1 To 1 To 1 To 1	3.03
Riffle Length (ft)		T	T T	12.0	18.5	15.0	41.0	62.0	51.3	11.7	38.7	24.0	14.7	22.9	17.6	15.1	23.2	17.9	15.4	24.1	23.1	6.5	21.2	14.8
Riffle Slope (fl/ft)				0.0283	0.0799	0.0520	0.0194	0.0328	0.0246	0.0285	0.0939	0.0458	0.0319	0.0720	0.0458	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow	
Pool Length (ft)		1		12.04	29.09	21.20	17.2	21.9	19.5	16.29	32.40	18.28	16.87	39.62	28.68	13.67	36.46	28.91	22.65	57.80	43,40	20.8	45.2	38.1
Pool Spacing (ft)				33.42	43.70	38.56	67.7	104.9	86.3	28.88	71.06	42.65	29.82	58.36	47.57	31.55	54.33	46.74	23.32	59.28	42.27	33.7	65.5	
Substrate	100		1 7 10					19,1121	30.0	20.00	71.001	72.00	27.02	50.50	41.51	31,331	34.33	40.74	23.32	39.20	42.27	33.1	63.31	49.2
D50 (mm)						69.2			9.5		T	9.5			40.5	r	T	31.0			75.1			28.4
D84 (mm)						140.1		- 1	17.2			17.2			162.8			60.2			147.1			58.9
Additional Reach Parameters	75 F - 1 VV2		LEW LOS	F - 1 - 2 - 2	(4) B = 1 (6)	1	Carlin land	J/H1 290	200	- 22		DOMESTIC OF STREET	Pro Table		102.01			00.21		THE RESERVE OF THE PERSON NAMED IN	147.1	A STATE OF THE RESERVE		30.9
Valley Length (ft)						974		1	387			387			320	T		320			320			320
Channel Length (ft)						1129			416			463			475			475			475			475
Sinuosity			1		13	1.2			1.07			1.20			1,48			1.48			1 48			1.48
Water Surface Slope (ft/ft)					- 1	0.0311			0.0300			0.0158			0.0101			No Flow			No Flow			No Flow
BF Slope (ft/ft)						0.0326			0.0300			0.0169			0.0106			0.0102			0.0115	-		0.0114
Rosgen Classification						E3/1b**			E4/1			E4/1			C4/1			C4/1			C4/1			0.0114 C4/I
Bankfull Discharge (cfs)			73.1			77.6			66.7			66.7			66.7			66.7			66.7			
Bankfull Velocity (ft/sec)			4.9			5.0			11.0			4.0			3.6			3.7			3.6			66.7
Notes: Blank fields = Historic project document	ation necessar	v to provide th	ese data were c	ollected/comp	iled	2.9			11.0			4.2			5.01			3.7			3.61			3.8

s: Blank fields = Historic project documentation necessary to provide these data were collected/compiled.

Where no min/max values is provided, and only one value was measured or computed, that value is presented as the mean or median value.

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

**E3/1b ("E3/1" E stream type channel morphology, large cobble substrate with bedrock control; E3/1"b" bankfull slope greater than 0.02 ft/ft.)

									n Creek ar	d Tributari	es Restorati	and Hydraul on / EEP Pro +00 to 23+45	ject No. D06											
Parameter		onal Curve Data		Davis Bran		10.10.00		isting Conditi			Design			Riffle XS-3 &			Riffle XS-3 &			Riffle XS-3 &			Riffle XS-3 &	
	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median
Dimension		THE RESERVE			THE SHAPE BETTER		AND LINES				- 11			The state of the s						TOTAL SECTION	THE WAR IN	34 75 C 150	STATE OF THE REAL PROPERTY.	TX STATE
Drainage Area (mi ²)			0.5712			0.5712			0.2371			0.2371			0.2371			0.2371			0.2371			0.2371
BF Width (ft)			11,24			12.91			11.22			9.00	9.22	13.80	11.51	9.66	11.84	10.75	9.12	10.00	9.56	10.41	12.50	96.56 8.86
Floodprone Width (ft)						50.00			30.70			50.00	86.55	110.03	98.29	83.50	107.54	95.52	81.42	109.58	95.50	87.23	105.88	96.56
BF Cross Sectional Area (ft²)			15.03			15.65			8.42			9.00	7.49	10.19	8.84	7.71	9.35	8.53	6.66	7.50	7.08	8.07	9.64	8.86
BF Mean Depth (ft)			1.33			1.21			0.75			1.00	0.74	0.81	0.78	0.79	0.80	0.80	0.58	0.82	0.70	0.65	0.93	0.79
BF Max Depth (ft)						1.61			1.17			1.50	1.64	1.95	1.80	1.57	1.58	1.58	1.61	1.88	1.75	1.70	1.95	1.83
Width/Depth Ratio			8.45			10.67			14.96			9.00	11.38	18.65	15.02	12.08	14.99	13.54	11.12	19.86	15.49	11.19	19.23	15.21
Entrenchment Ratio						3.87			2.74			5.56	7.97	9.39	8.68	8.64	9.08	8.86	8,93	9.51	9.22	8.38	8.47	0.79 1.83 15.21 8.43 1.00
Bank Height Ratio						1.00			1.76			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Wetted Perimeter (ft)			13.90			13.72			14.52			11.00	9.82	14.22	12.02	10.16	12.25	11.21	9.79	12.11	10.95	11.16	13.34	12.25
Hydraulic Radius (ft)			1.08			1.14			1.00			0.82	0.72	0.76	0.74	0.76	0.76	0.76	0.55	0.77	0.66	0.60	0.86	0.73
Pattern	0.00		100000			THE SECOND	A		DATE OF	SILVE III	COMPANY IN	di di di devado		HAN III A ANDE			AND THE RES	HIGH STOOL	THE DELIVER		FIRST No. 10	G AN IEE	The state of the s	
*Channel Beltwidth (ft)				27.80	53.00	38.00						50.00			50.00			50.00			50.00			50.00 18.00 75.00
*Radius of Curvature (ft)				16,40	45.30	29.40				17.00	25.00	20.00	13.00	25.00	18.00	13.00	25.00	18.00	13.00	25.00	18.00	13.00	25.00	18.00
*Meander Wavelength (ft)				80.10	116.50	99.20				63.29	93.84	75.00	63.29	93.84	75.00	63.29	93.84	75.00	63.29	93.84	75.00	63.29	93.84	75.00
*Meander Width Ratio				2.15	4.11	2.94						5.56			4.34			4.65			5.23			4.36
Profile								5 2 10 5	- F	1000		100000	ne skalane	Table 1 and the last			The state of the s			1000		Carlo Sa	Date of the last	0
Riffle Length (ft)			-T	12.0	18.5	15.0	47.0	60.0	53.5	10.5	46.1	28.6	7.6	30.2	15.5	8.7	31.31	16.9	8.7	39.2	16.4	7.11	34.7	16.5
Riffle Slope (ft/ft)				0.0283	0.0799		0.0117	0.0185	0.0151	0.0228	0.0957	0.0381	0.0088	0.0702	0.0247	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow	No Flow
Pool Length (ft)				12.04	29.09	21.20	24,60	39.40		18.69	40.99		22.96	57.82	36.89	19.50	56.80	35.50	34.82	74.00	50,77	23.02	69.86	44.57
Pool Spacing (ft)				33.42	43.70	38.56	35.40	76.60		32.70	85.05		18.07	79.78	50.30	13.40	76,80	49.80	19.59	91.41	49.26	24.11	79,79	51.51
Substrate	12 LO		30000	33,12	-15-15-15-15-1	20.20	201701	, 0.00		32.701	05.03		10.071	12.701	50.50	12,10	70.001	12.001	(7.37)	21,711	17.20		17.12	2,1,2,1
D50 (mm)			T			69.2			5.5			5.5	61.4	76.1	68.7	28.5	32.9	30.7	49.4	75.4	62.4	46.1	47.4	46.7
D84 (mm)						140.1			16.1			16.1	143.6	175.5	159.5	84.4	97.1	90.8	100.1	143.0	121.6	74.4	84.8	46.7 79.6
Additional Reach Parameters	STATE OF THE PARTY	Figure 253 C			DOMESTIC SAFE	170.1		100000000000000000000000000000000000000	10.11		- Dec	10.1	143.01	X13.3	137.5	04.41	27.1	20.0	100.11	145.0	121.0	74.4	04.0]	13.0
Valley Length (ft)		T T	T			974	T	T	1637	ī		1594	T	T	1622			1622		T	1622		T	1622
Channel Length (ft)			-			1129			1867			2328			2345			2345			2345			2345
Channel Length (It)						1.29			1.14			1 46			1.45			1.45			1.45			1.45
Water Surface Slope (ft/ft)			-			0.0311			0.0051			0.0047			0.0047		-	No Flow			No Flow			No Flow
BF Slope (ft/ft)			_			0.0311			0.0051			0.0047			0.0047		-	0.0044			0.0038			0.0039
						E3/1b**			C4/1			E4/1			C3/1		-							0.0039
Rosgen Classification			72.1												32.2			C4/1			C4/1			C4/1
Bankfull Discharge (cfs)			73.1			77.6			32.2			32.2			32.2			32.2			32.2			32.2
Bankfull Velocity (ft/sec)			4.9			5.0			3.8			3.6			3.6			3.8			4.5			3.6

Notes: Blank fields = Historic project documentation necessary to provide these data were collected/compiled.

Where no min/max values is provided, and only one value was measured or computed, that value is presented as the mean or median value.

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

**E3/1b ("E3/1" E stream type channel morphology, large cobble substrate with bedrock control; E3/1"b" bankfull slope greater than 0.02 ft/ft.)

								Beave	Table XII rdam Cree	k and Tribut	eomorphologic a aries Restoration ach: UT2 Sta. 0	on / EEP	Project No. 1	ary D06054-C										
Parameter		onal Curve Data		الإنتان أن المناطقة والمناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة المناطقة	ch Reference			sting Condi			Design		TANK TO SEE STATE OF THE PARTY	uilt (Riffle X	S-2)	Yes	ar 1 (Riffle XS	3-2)	Yea	r 2 (Riffle XS	-2)	Ves	r 3 (Riffle XS	S-2)
	Min	Max N	Aean	Min	Max	Mean	Min	Max	Mean	Min	Max N	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median	Min	Max	Median
Dimension	1 -0-1 114-11	THE SUBJECT		SECOND NO. 10	100 100 100		allan =	CONTRACTOR	N. PYLUDEU	STATE OF THE STATE OF			BILL BOY	1/3/1 00		The state of the last	- 92		No. of the last			O' POPULATION	21 FF 11 15 FF	
Drainage Area (mi²)			0.5712			0.5712			0.0765			0.0765			0.0765			0.0765			0.0765			0.076
BF Width (ft)			11.24			12.91			4.91			6.30			6.77			6.43			6.91			6.9
Floodprone Width (ft)						50.00			21.24			50.00			92.21			43.89			82.57			35.5
BF Cross Sectional Area (ft²)			15.03			15.65			2.88			4.30			4.10			3.51	7		3.13			3.4
BF Mean Depth (ft)			1.33			1.21			0.59			0.68			0.60			0.55			0.45			3.4 0.4
BF Max Depth (ft)						1.61			0.99			1.00			1.06			0.96			1.02			0.9
Width/Depth Ratio			8.45			10.67			8.32			9.26			11.28			11.69			15.36			14.2
Entrenchment Ratio						3.87			4.33			7.94			13,61			6.82			11.95	-		5.0
Bank Height Ratio				i		1.00			2.12			1.00			1.00			1.00			1.00			1.0
Wetted Perimeter (ft)			13.90			13.72			5.70			6.77			7.13			6.75			7.42			8.4
Hydraulic Radius (ft)			1.08			1.14			0.51			0.63			0.57			0.73			0.42			0.4
Pattern				1 No. 1			A STATE OF THE PARTY OF THE PAR	100	VISCO TITLE		THE RESERVE THE PARTY.	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CE VICE III	0.57	II FUNE	EXECUTE SEC	0.52	THE FIRST HES	5 300 1-0	0.42			0.4
*Channel Beltwidth (ft)				27.80	53.00	38.00						50.00			50.00			50.00			50.00			50.0
*Radius of Curvature (ft)	U			16,40	45.30	29.40				12.50	16.00	14.50	12.50	16.00	14.50	12.50	16.00	14.50	12.50	16.00	14.50	12.50	16.00	50.00 14.50
*Meander Wavelength (ft)				80.10	116.50	99.20				58.08	59.76	58.92	58.08	59.76	58.92	58.08	59.76	58.92	58.08	59.76	58.92	58.08	59.76	14.5
*Meander Width Ratio				2.15	4.11	2.94				0.0100		7.94	50.00	33.10	7.39	20.00	39.10	7.78	30.00	39.70	7.24	38.08	39.70	58.92 7.13
Profile		NET CHILD SELECT	10000	ATO	- 11-55	E-JAV. To	CONTRACTOR OF THE PARTY OF THE	THE RESERVE	STATE OF STREET	- I (-)	PARTICIPATION D		Water Street		1.09			7.70			1.24			7.17
Riffle Length (ft)				12.0	18.5	15.0	33.0	72.4		13.2	27.1	22.7	12.4	23.9	15.7	11.8	19.6	16.5	6.8	28.4	16.2	0.01	20.4	The same of the sa
Riffle Slope (ft/ft)				0.0283	0.0799		0.0173	0.0306	- 1	0.0258		0.0308	0.0115	0.0451	0.0213	No Flow	No Flow	No Flow	No Flow	No Flow	16.3	8.0	25.1	
Pool Length (ft)				12.0	29.1		25.0	26.9		19.4	51.1	25.8	23.7	41.0	30.1	28.9	42.8		28.0		No Flow	No Flow	No Flow	
Pool Spacing (ft)				33.4	43.7		20.0	20,7	141.2	42.0	64.3	51.9	35.6	70.0	49.3	35.0	60.3	36.5 46.4	39.7	44.3	34.0	33.6	43.0	
Substrate	3- 66-5	THE PERSON			12.7	50.0	100 300		171.2	72.0]	04.51	31.9	33.01	70.01	49.3	33.0[60.3	40.4	39.7	64.0	54.9	26.2	56.9	45.
D50 (mm)			-T			69.2			7.8	Т		7.8			90.0			20.0	HITOO THE SEC			Date of the		EHROLE FULL
D84 (mm)						140.1			21.6			21.6			210.4			39.8 104.6			65.5			55,4
Additional Reach Parameters		S // S // S // S	JEST B			140.11	The Part of the Pa		21.0			21.0			210.4			104.6			138.4			105.2
Valley Length (ft)			-T			974			200			194	The state of the s	7	101	EY CALLS		101						Distance of
Channel Length (ft)						1129			203			282			191			191			191			191
Sinuosity						12			1.02			1.45			284			284			284			284
Water Surface Slope (ft/ft)			_			0.0311			0.0171			0.0054			1.49 0.0075			1.49			1.49			1.49
BF Slope (ft/ft)			_			0.0311			0.0171			0.0054						No Flow			No Flow			No Flow
Rosgen Classification						E3/1b**			0.0192 F4			0.0054 F4			0.0062			0.0073			0.0034			0.0034
Bankfull Discharge (cfs)			73.1			77.6			10.4			10.4	J U		C3/1			C4/1			C4/1			C4/
Bankfull Velocity (ft/sec)			4.9			5.0			3.6			2.4			10.4			10.4			10.4			10.4

Notes: Blank fields = Historic project documentation necessary to provide these data were collected/compiled.

Where no min/max values is provided, and only one value was measured or computed, that value is presented as the mean or median value.

* Inclusion will be project specific and determined primarily by As-built monitoring plan/success criteria

**E3/1b ("E3/1" E stream type channel morphology, large cobble substrate with bedrock control; E3/1"b" bankfull slope greater than 0.02 ft/ft.)

Table XIII: Baseline Geomorphic and Hydraulic Summary - All Cross Sections	eomorphi	c and Hy	draulic	Summar	y - All Cr	oss Sect	ions	
Beaverdam Creek and Unnamed Tributaries Stream Restoration / EEP Project No. D06054-C	ed Tribut	aries Str	eam Res	toration	EEP Pro	oject No.	. D06054	Ç
R	Reach: Beaverdam Creek Mainstem	verdam (Creek M	ainstem				
Parameter		Cross Section (Pool 7)	ection 17)			Cross Section (Riffle 8)	ection le 8)	
Dimension	MX 0	MY 1	MX 2	MY 3	MX 0	MY 1	MY 2	MY 3
BF Width (ft)	18.08	16.22	14.65	18.14	18.43	17.73	17.50	16.38
Floodprone Width (ft)	132.38	130.85	127.92	129.72	135.63	133.69	132.80	131.26
BF Cross Sectional Area (ft²)	21.87	20.32	17.70	21.34	18.48	17.91	18.76	17.71
BF Mean Depth (ft)	1.21	1.25	1.21	1.18	1.00	1.01	1.07	1.08
BF Max Depth (ft)	2.67	2.50	2.37	2.53	2.30	2.06	2.00	1.93
Width/Depth Ratio	14.94	12.98	12.11	15.37	18.43	17.55	16.36	15.17
Entrenchment Ratio	7.32	8.07	8.73	7.15	7.36	7.54	7.59	8.01
Bank Height Ratio	1	-	-	-	-	П	1	1
Wetted Perimeter (ft)	18.96	17.04	15.48	18.96	19.09	18.43	18.14	17.02
Hydraulic Radius (ft)	1.15	1.19	1.14	1.13	0.97	0.98	1.03	1.04
Substrate								
D50 (mm)	0.15	7.42	21.66	16.00	40.45	31.01	75.14	28.42
D84 (mm)	64.35	31.33	58.29	46.53	162.84	60.21	147.06	58.93

-

		Table	XIII: Ba	seline G	eomorph	ic and Hy	Table XIII: Baseline Geomorphic and Hydraulic Summary - All Cross Sections	Summary	v - All Cr	oss Sectio	suc					
	Bea	verdam (reek and	Unname	d Tribut	aries Str	Beaverdam Creek and Unnamed Tributaries Stream Restoration/ EEP Project No. D06054-C	oration/]	EEP Proj	ect No. D	06054-C					
						Reach: UT-1	UT-1									
Parameter		Cross Section	ection			Cross Section	ection			Cross Section	ection			Cross Section	ection	
		TANK	ica			00 1)	(1.7)			(TOO)	10				(0.2)	
Dimension	MY 0	MY 1	MX 2	MY 3	MX 0	MY 1	MY 2	MY 3	MY 0	MY 1	MY 2	MY 3	MX 0	MY 1	MY 2	MY 3
BF Width (ft)	13.80	11.84	10.00	12.50	10.22	10.27	9.47	9.25	90.6	9.12	8.78	8.97	9.22	99.6	9.12	10.41
Floodprone Width (ft)	110.03	107.54	109.58	105.88	102.77	102.04	106.63	97.90	85.25	84.39	83.71	86.97	86.55	83.50	81.42	87.23
BF Cross Sectional Area (ft²)	10.19	9.35	99.9	8.07	9.28	8.94	9.11	7.99	10.44	9.95	11.12	10.39	7.49	1.7.1	7.50	9.64
BF Mean Depth (ft)	0.74	0.79	0.58	0.65	0.91	0.87	96.0	98.0	1.15	1.09	1.27	1.16	0.81	0.80	0.82	0.93
BF Max Depth (ft)	1.64	1.58	1.61	1.70	1.72	1.74	1.79	1.67	2.21	2.18	2.25	2.21	1.95	1.57	1.88	1.95
Width/Depth Ratio	18.65	14.99	19.86	19.23	11.23	11.80	98.6	10.76	7.88	8.37	16.91	7.73	11.38	12.08	11.12	11.19
Entrenchment Ratio	7.97	80.6	9.51	8.47	10.05	9.93	11.25	10.58	9.41	9.25	9.53	9.70	62.6	8.64	8.93	8.38
Bank Height Ratio	1	1	1	1	1	-	-	1	1	-	-	Ξ	1	-	-	-
Wetted Perimeter (ft)	14.22	12.25	12.11	13.34	10.82	10.87	10.19	9.90	10.10	10.11	10.01	10.08	9.82	10.16	9.79	11.16
Hydraulic Radius (ft)	0.72	0.76	0.55	09.0	98.0	0.82	68.0	0.81	1.03	86.0	1.11	1.03	92.0	0.76	0.77	0.86
Substrate																
D50 (mm)	61.41	28.47	75.37	47.37	0.29	0.29	90.0	90.0	20.96	7.23	36.34	24.31	76.07	32.93	49.38	46.12
D84 (mm)	175.48	97.10	143.02	84.80	67.46	67.46	103.02	46.91	114.83	23.11	87.77	55.77	143.58	84.40	100.13	74.40

Table XIII: Baseline Geomorphic and Hydraulic Summary - All Cross Sections	eomorphi	c and Hy	/draulic	Summar	y - All Cı	oss Secti	ons	
Beaverdam Creek and Unnamed Tributaries Stream Restoration / EEP Project No. D06054-C	ed Tribut	aries Str	eam Rest	toration	/ EEP Pr	oject No.	D06054-	ر ت
		Reach: UT-2	UT-2					
Darameter		Cross Section	ection			Cross Section	ection	
i alametel		(Pool 1)	11)			(Riffle 2)	e 2)	
Dimension	0 AM	MX 1	MX 2	MX 3	MX 0	MY 1	MY 2	MY 3
BF Width (ft)	13.77	13.46	10.55	9.82	11.55	6.43	6.91	66.9
Floodprone Width (ft)	92.68	20.06	85.31	81.23	114.79	43.89	82.57	35.55
BF Cross Sectional Area (ft²)	16.15	13.52	10.12	7.25	6.35	3.51	3.13	3.46
BF Mean Depth (ft)	1.17	1.00	96.0	0.74	0.55	0.55	0.45	0.49
BF Max Depth (ft)	2.41	2.37	1.81	1.70	1.31	96.0	1.02	0.91
Width/Depth Ratio	11.77	13.46	10.99	13.27	21.00	11.69	15.36	14.27
Entrenchment Ratio	6.52	69.9	8.09	8.27	9.94	6.82	11.95	5.08
Bank Height Ratio	1	1	1	1	1	1		1
Wetted Perimeter (ft)	14.73	14.46	11.34	10.61	11.95	6.75	7.42	8.42
Hydraulic Radius (ft)	1.10	0.93	0.89	0.68	0.53	0.52	0.42	0.41
Substrate								
D50 (mm)	33.08	11.12	0.05	0.05	90.00	39.80	65.45	55.37
D84 (mm)	220.56	70.93	25.61	56.39	210.40	104.63	138.39	105.20

APPENDIX A

- Vegetation Raw Data
 1. Vegetation Monitoring Plot Photos
 2. Vegetation Data Tables
- 3. Vegetation Problem Area Photos
- 4. Vegetation Problem Area Plan View

Vegetation Plot 1 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 2 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 3 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 4 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 5 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 6 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 7 Monitoring Year 3 (EMH&T, 9/13/11)

Vegetation Plot 8 Monitoring Year 3 (EMH&T, Inc. 9/13/11)

	Table 1. Vegetation Metadata
Report Prepared By	Megan Wolf
Date Prepared	10/31/2011 16:02
database name	cv3-eep-entrytool-v2.2.6.mdb
database location	Q.\ENVIRONMENTAL\Monitoring\EEP Vegetation Database
computer name	HXIN941
file size	51286016
DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT—	IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes,
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tailled by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	D06054C
project Name	Beaverdam Creak
Description	Stream restoration of Beaverdam Creek mainstern and two unnamed tributaries.
River Basin	
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Piots (calculated)	
Campled Diore	C

	Table 2. Veget	ation	Vig	or b	y Sp	ecie	S	
	Species	4	3	2	1	0	Missing	Unknown
	Alnus serrulata	8	2	2				
	Aronia arbutifolia	1	1	3			1	
	Cephalanthus occidentalis	15	3	2		1		
	Cornus amomum	1	6					
	Diospyros virginiana	6	3	2				
	Fraxinus pennsylvanica	1						
	Quercus bicolor	1	1					
	Quercus coccinea		1					
	Quercus palustris	3						
	Sambucus canadensis	1						
	Taxodium distichum	3	3					
	Ulmus rubra			1				
	Liriodendron tulipifera	1	2	1	1			
	Platanus occidentalis	34	1			1		
TOT:	14	75	23	11	1	2	1	

	Table 3. Vegetation D	ama	ge by	Spe	cies			
	Species	All Damage Categories	(no damage)	Deer	Insects	Site Too Dry	Unknown	(other damage)
	Alnus serrulata	12	10			_ 1		1
	Aronia arbutifolia	6	5	1				
	Cephalanthus occidentalis	22	17	1	1			3
	Cornus amomum	7	7					
	Diospyros virginiana	11	9			2		
	Fraxinus pennsylvanica	1	1					
	Liriodendron tulipifera	.5	2				1	2
	Platanus occidentalis	36	36					
	Quercus bicolor	2	2					
	Quercus coccinea	1	1					
	Quercus palustris	3	3					
	Sambucus canadensis	1	1					
	Taxodium distichum	6	6					
	Ulmus rubra	1				1		
TOT:	14	114	100	2	1	4	1	6

	Table 4. Vegetation	n Dar	nage	by P	ot			
	plot	All Damage Categories	(no damage)	Deer	Insects	Site Too Dry	Unknown	(other damage)
	D06054C-01-0001 (year 3)	12	9				1	2
	D06054C-01-0002 (year 3)	17	14	2				1
	D06054C-01-0003 (year 3)	16	16					
	D06054C-01-0004 (year 3)	22	18		1			3
	D06054C-01-0005 (year 3)	11	11					
	D06054C-01-0006 (year 3)	8	6			2		
	D06054C-01-0007 (year 3)	14	12			2		
	D06054C-01-0008 (year 3)	14	14					
TOT:	8	114	100	2	1	4	1	6

	Species	Total Planted Stems	# plots	avg# stems	plot D06054C-01-0001 (year 3)	plot D06054C-01-0002 (year 3)	plot D06054C-01-0003 (year 3)	plot D06054C-01-0004 (year 3)	plot D06054C-01-0005 (year 3)	plot D06054C-01-0006 (year 3)	plot D06054C-01-0007 (year 3)	plot D06054C-01-0008 (year 3)
	Alnus serrulata	12	7	1.71	1		4	1	2	2	1	1
	Aronia arbutifolia	5	3	1.67		1	1		3			
	Cephalanthus occidentalis	20	4	5		3	6	6	5			
	Cornus amomum	7	2	3.5		3		4				
	Diospyros virginiana	11	1	11							11	
	Fraxinus pennsylvanica	1	1	1	1							
	Liriodendron tulipifera	5	3	1.67	2	2	1					
	Platanus occidentalis	35	7	5	5	7	2	10		1	1	9
	Quercus bicolor	2	1	2								2
	Quercus coccinea	1	1	1						1		
	Quercus palustris	3	2	1.5							1	2
	Sambucus canadensis	1	1	1			1					
	Taxodium distichum	6	2	3	3					3		
	Ulmus rubra	1	1	1						1		
TOT:	14	110	14		12	16	15	21	10	8	14	14

	Table 6. Stem Co	unt b	y Plo	t and S _l	pecie	s - a	l ste	ms				
	Species	Total Stems	# plots	avg# stems	plot D06054C-01-0001 (year 3)	plot D06054C-01-0002 (year 3)	plot D06054C-01-0003 (year 3)	plot D06054C-01-0004 (year 3)	plot D06054C-01-0005 (year 3)	plot D06054C-01-0006 (year 3)	plot D06054C-01-0007 (year 3)	plot D06054C-01-0008 (year 3)
	DONTKNOW: unsure record	3	1	3	3							
	Alnus serrulata	12	7	1.71	1		4	1	2	2	1	1
	Aronia arbutifolia	5	3	1.67		1	1		3			
	Cephalanthus occidentalis	21	4	5.25		3	7	6	5			
	Cornus amomum	7	2	3.5		3		4				
	Diospyros virginiana	11	1	11							11	
	Fraxinus pennsylvanica	71	4	17.75	16	15	39	1				
	Liquidambar styraciflua	202	8	25.25	32	15	16	1	10	10	100	18
	Nyssa sylvatica	1	1	1			1					
	Quercus alba	2	1	2								2
	Quercus bicolor	2	1	2								2
	Quercus coccinea	2	2	1						1		1
	Quercus palustris	4	2	2							1	3
	Sambucus canadensis	17	3	5.67			3				2	12
	Taxodium distichum	6	2	3	3					3		
	Ulmus rubra	3	2	1.5						1	2	
	Liriodendron tulipifera	8	5	1.6	2	2	2	1	1			
	Platanus occidentalis	37	7	5.29	6	7	2	11		1	1	9
TOT:	18	414	18		63	46	75	25	21	18	118	48

VPA 1
Sparse vegetation along the left bank of UT2 at station 2+50. (EMH&T, 9/13/11)

VPA 2
View of the spread of microstegium at along UT1, between stations 16+00 and 17+50. This invasive grass is found in various patches along the project corridor, but is most prominent in this area.

(EMH&T, 9/13/11)

VPA 3
Sparse vegetation along the right bank of UT1 at station 17+80. (EMH&T, 9/13/11)

APPENDIX B

Geomorphologic Raw Data

- 1. Fixed Station Photos
- 2. Table B1. Qualitative Visual Stability Assessment
 - 3. Cross Section Plots
 - 4. Longitudinal Plots
 - 5. Pebble Count Plots
 - 6. Bankfull Event Photos
 - 7. Stream Problem Areas Photos
 - 8. Stream Problem Area Plan View

Fixed Station 1
Overview of Beaverdam Creek, looking downstream
(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).
(EMH&T)

Fixed Station 2
Overview of UT1, looking upstream near station 19+00
(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).
(EMH&T)

Fixed Station 3

Overview of valley along UT1, looking upstream near station 13+00
(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).
(EMH&T)

Fixed Station 4
Overview of valley along UT1, looking downstream near station 13+00 (EMH&T, Inc. 9/19/10)

Fixed Station 5

Overview of UT1, looking downstream from upstream project limits
(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).
(EMH&T)

Fixed Station 6
Overview of UT2, looking downstream
(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).
(EMH&T)

	Table B1. Visual Morphological Stability Assessment Beaverdam Creek Stream Restoration / EEP Project No. D06054-C Segment/Reach: Mainstem	tability Assess EP Project No.	ment D06054-C			
	C	(# Stable)				Feature
				Total Number /	% Perform	Perform.
Feature Category	Metric (per As-built and reference baselines	Performing as Intended	number per As-built	reet in unstable in stable state	in Stable Condition	Mean or Total
A. Riffles	1. Present?	10	10	0	06	
	2. Armor stable (e.g. no displacement)?	10	10	0	100	
	3. Facet grade appears stable?	10	10	0	100	
	4. Minimal evidence of embedding/fining?	10	10	0	100	
	5. Length appropriate?	10	10	0	100	%86
B. Pools	 Present? (e.g. not subject to severe aggrad. or migrat.?) 	6	6	0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	6	6	0	100	
	3. Length appropriate?	6	6	0	100	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	10	10	0	100	
	2. Downstream of meander (glide/inflection) centering?	10	10	0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	10	10	0	100	
	2. Of those eroding, # w/concomitant point bar formation?	10	10	0	100	
	3. Apparent Rc within spec?	10	10	0	100	
	4. Sufficient floodplain access and relief?	10	10	0	100	100%
E. Bed General	1. General channel bed aggradation areas (bar formation)	N/A	A/N	0/0 feet	100	
	2. Channel bed degradation - areas of increasing downcutting					
	or headcutting?	N/A	N/A	0/0 feet	100	100%
F. Vanes	1. Free of back or arm scour?	N/A	0	N/A	N/A	
	2. Height appropriate?	N/A	0	N/A	N/A	
	3. Angle and geometry appear appropriate?	N/A	0	N/A	N/A	
	4. Free of piping or other structural failures?	N/A	0	A/N	A/N	N/A
G. Wads/ Boulders	1. Free of scour?	N/A	0	A/A		
	2. Footing stable?	N/A	0	NA	N/A	A/N

Γ			eature	Perform.	Mean or Total					100%			100%		100%				93%			100%				A/A		N/A
					Total	9	0	0	0	0	0	100	0	00	2	06	0	100	83	00		100	Ι¥,	₹	Y.	Α	N/A	N/A
			,	% Perform	In Stable Condition	100	100	100	100	100	100	10	100	100	100	6	100	10	۵	100		10	A/N	N/A	A/N	N/A	Ź	
				Total Number / % Perform	state Condition	0	0	0	0	0	0	0	0	0	0	4	0	0	7	0/0 feet		0/0 feet	N/A	N/A	N/A	N/A	N/A	N/A
sment	D06054-C				As-built	43	43	43	43	43	42	42	42	41	41	41	41	41	41	A/A		N/A	0	0	0	0	0	0
tability Asses	EP Project No.	П	(# Stable)	Number	as Intended	43	43	43	43	43	42	42	42	41	41	37	41	41	34	N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A
Table B1. Visual Morphological Stability Assessment	Beaverdam Creek Stream Restoration / EEP Project No. D06054-C	Segment/Reach: UT			Metric (per As-built and reference baselines	1. Present?	2. Armor stable (e.g. no displacement)?	3. Facet grade appears stable?	4. Minimal evidence of embedding/fining?	5. Length appropriate?	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	3. Length appropriate?	1. Upstream of meander bend (run/inflection) centering?	2. Downstream of meander (glide/inflection) centering?	1. Outer bend in state of limited/controlled erosion?	2. Of those eroding, # w/concomitant point bar formation?	3. Apparent Rc within spec?	4. Sufficient floodplain access and relief?	1. General channel bed aggradation areas (bar formation)	2. Channel bed degradation - areas of increasing downcutting	or headcutting?	1. Free of back or arm scour?	2. Height appropriate?	3. Angle and geometry appear appropriate?	4. Free of piping or other structural failures?	G. Wads/ Boulders 1. Free of scour?	2. Footing stable?
					Feature Category	A. Riffles					B. Pools			C. Thalweg		D. Meanders				E. Bed General			F. Vanes				G. Wads/ Boulder	

(# Stable)		Table B1. Visual Morphological Stability Assessment Beaverdam Creek Stream Restoration / EEP Project No. D06054-C Segment/Reach: UT2	ability Assess Project No.	ment D06054-C			
Performing laber of the partic (per As-built and reference baselines) Performing as Intended As-built and reference baselines Performing as Intended As-built and reference baselines Performing As-built and reference baselines 5 <th< th=""><th></th><th></th><th>(e</th><th>Total</th><th>Total Number /</th><th>% Perform</th><th>Feature Perform.</th></th<>			(e	Total	Total Number /	% Perform	Feature Perform.
1. Present? 5 5 2. Armor stable (e.g. no displacement)? 5 5 3. Facet grade appears stable? 5 5 4. Minimal evidence of embedding/fining? 3 5 5. Length appropriate? 3 5 1. Present? (e.g. not subject to severe aggrad. or migrat.?) 5 5 2. Sufficiently deep (Max Pool D:Mean Bk²+1.6?) 4 5 3. Length appropriate? 6 6 6 4. Lybstream of meander bend (run/inflection) centering? 6 6 6 5. Length appropriate? 6 6 6 6. Lownstream of meander (glide/inflection) centering? 6 6 6 7. Lough bend in state of limited/controlled erosion? 6 6 6 9. Apparent Rc within spec? 6 6 6 1. Outer bend in state of limited/controlled erosion? 5 6 6 3. Apparent Rc within spec? 5 6 6 6 4. Sufficient floodplain access and relief? 5 6 6 5. Channel bed degradation - areas of increasing downcutting 6 6 6. Hei	Feature Category	Metric (per As-built and reference baselines		per	feet in unstable in Stable state	in Stable Condition	Mean or Total
2. Armor stable (e.g. no displacement)? 5 5 3. Facet grade appears stable? 5 5 4. Minimal evidence of embedding/fining? 3 5 5. Length appropriate? 5 5 1. Present? (e.g. not subject to severe aggrad. or migrat.?) 5 5 2. Sufficiently deep (Max Pool D:Mean Bk½-1.6?) 4 5 3. Length appropriate? 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 9 9 3 9 9 4 5 </td <td>A. Riffles</td> <td>1. Present?</td> <td>5</td> <td>5</td> <td>0</td> <td>_</td> <td></td>	A. Riffles	1. Present?	5	5	0	_	
3. Facet grade appears stable? 5 5 4. Minimal evidence of embedding/fining? 3 5 5. Length appropriate? 5 5 6. Length appropriate? 5 5 7. Present? (e.g. not subject to severe aggrad. or migrat.?) 5 5 8. Length appropriate? 6 6 9. Sufficiently deep (Max Pool D:Mean BkP-1.6?) 5 5 10. Upstream of meander bend (run/inflection) centering? 6 6 11. Upstream of meander (glide/inflection) centering? 6 6 12. Downstream of meander (glide/inflection) centering? 6 6 13. Apparent Ro within spec? 5 6 6 14. Sufficient floodplain access and relief? 5 6 6 25. Of those eroding, # w/concomitant point bar formation) N/A N/A N/A 3. Apparent Ro within spec? 6 6 6 4. Sufficient floodplain access and relief? 5 6 6 5 channel bed degradation - areas of increasing downcutting N/A N/A N/A 6 chance of back or arm scour? N/A N/A 0 7. Height a		2. Armor stable (e.g. no displacement)?	2	5	0	100	
4. Minimal evidence of embedding/fining? 3 5 5. Length appropriate? 5 5 1. Present? (e.g. not subject to severe aggrad. or migrat.?) 5 5 2. Sufficiently deep (Max Pool D:Mean BkP-1.6?) 4 5 3. Langth appropriate? 5 5 6. Sufficiently deep (Max Pool D:Mean BkP-1.6?) 5 6 6. Sufficiently deep (Max Pool D:Mean BkP-1.6?) 5 5 6. Longth appropriate? 6 6 6 6. Sufficient floodplain access and relief? 5 6 6 6. Sufficient floodplain access and relief? 5 6 6 6. Sufficient floodplain access and relief? 5 6 6 6. Sufficient floodplain access and relief? 6 6 6 7. Channel bed aggradation - areas of increasing downcutting or headcutting? N/A N/A 0 8. Height appropriate? 1. Free of back or arm scour? N/A 0		3. Facet grade appears stable?	5	5	0		
5. Length appropriate? 5 6 9 9 <td></td> <td></td> <td>3</td> <td>5</td> <td>0</td> <td>09</td> <td></td>			3	5	0	09	
1. Present? (e.g. not subject to severe aggrad. or migrat.?) 5 5 2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?) 4 5 3. Length appropriate? 5 5 5 6 6 6 6 6 6 7. Upstream of meander (glide/inflection) centering? 6 6 6 6 6 6 6 6 6 6 7. Outer bend in state of limited/controlled erosion? 6 6 6 7. Outer bend in state of limited/controlled erosion? 6 6 6 8. Apparent Rc within spec? 6 6 6 9. Apparent Rc within spec? 6 6 6 4. Sufficient floodplain access and relief? 5 6 6 5 Anfleient floodplain access and relief? 5 6 6 6 A. Sufficient floodplain access and relief? 5 6 6 6 A. Sufficient floodplain access and relief? 5 6 6 7 Channel bed degradation - areas of increasing downcutting 8 8 8 8 Angle and geometry appear appropriate? 8 8 8		5. Length appropriate?	9	5	0	100	%76
2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?) 4 5 3. Length appropriate? 5 5 3. Length appropriate? 6 6 2. Downstream of meander (glide/inflection) centering? 6 6 4. Sufficient bend in state of limited/controlled erosion? 6 6 5. Of those eroding, # w/concomitant point bar formation? 6 6 6. Sufficient floodplain access and relief? 6 6 6. Sufficient floodplain access and relief? 5 6 6. Sufficient floodplain access and relief? 5 6 7. Sufficient floodplain access and relief? 5 6 8. Sufficient floodplain access and relief? 5 6 9. Channel bed aggradation - areas of increasing downcutting N/A N/A 0/0 1. Free of back or arm scour? N/A N/A 0 2. Height appropriate? N/A 0 3. Angle and geometry appear appropriate? N/A 0 4. Free of piping or other structural failures? N/A 0 2. Footing stable? N/A 0 2. Footing stable? N/A 0	B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	9	5	0	100	
3. Length appropriate? 5 eg 1. Upstream of meander bend (run/inflection) centering? 6 2. Downstream of meander (glide/inflection) centering? 6 6 lers 1. Outer bend in state of limited/controlled erosion? 5 6 2. Of those eroding, # w/concomitant point bar formation? 6 6 3. Apparent Rc within spec? 6 6 4. Sufficient floodplain access and relief? 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7. General channel bed aggradation - areas of increasing downcutting N/A N/A 10 1. Free of back or arm scour? N/A 0 2. Height appropriate? N/A		2. Sufficiently deep (Max Pool D:Mean Bkf>1.6?)	4	5	0	80	
eg 1. Upstream of meander bend (run/inflection) centering? 6 6 2. Downstream of meander (glide/inflection) centering? 6 6 4. Downstream of meander (glide/inflection) centering? 6 6 2. Of those eroding, # w/concomitant point bar formation? 6 6 3. Apparent Rc within spec? 6 6 4. Sufficient Rc within spec? 6 6 6 6 6 7. Sufficient Rc within spec? 6 6 8. Sufficient Rc within spec? 6 6 9. Sufficient Bod pagradation access and relief? 5 6 6 9. Channel bed aggradation access and relief? 8 7 6 6 1. General channel bed aggradation aceas of increasing downcutting or headcutting? 10 10 10 1. Free of back or arm scour? 1. Free of back or arm scour? 1. Anyla 0 0 2. Height appropriate? 1. Free of piping or other structural failures? 1. Anyla 0 0 2. Free of piping or other structural failures? 1. Free of scour? 1. Anyla 0 0 <td></td> <td>3. Length appropriate?</td> <td>5</td> <td>5</td> <td>0</td> <td>-</td> <td>93%</td>		3. Length appropriate?	5	5	0	-	93%
2. Downstream of meander (glide/inflection) centering? 6 6 lers 1. Outer bend in state of limited/controlled erosion? 5 6 6 2. Of those eroding, # w/concomitant point bar formation? 6 6 6 6 3. Apparent Rc within spec? 6 7 7 6 6 7 7 7 7 7	C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	9	9	0	100	
lers 1. Outer bend in state of limited/controlled erosion? 5 6 2. Of those eroding, # w/concomitant point bar formation? 6 6 3. Apparent Rc within spec? 6 6 4. Sufficient floodplain access and relief? 5 6 6 6 6 7. General channel bed aggradation areas (bar formation) N/A N/A 0/O 9. Channel bed degradation - areas of increasing downcutting or headcutting? N/A N/A 0/O 1. Free of back or arm scour? N/A N/A 0 2. Height appropriate? N/A 0 0 3. Angle and geometry appear appropriate? N/A 0 0 4. Free of piping or other structural failures? N/A 0 0 Boulders 1. Free of scour? N/A 0 0 2. Footing stable? N/A 0 0 0		2. Downstream of meander (glide/inflection) centering?	9	9	0	100	100%
2. Of those eroding, # w/concomitant point bar formation? 6 6 3. Apparent Rc within spec? 6 6 4. Sufficient floodplain access and relief? 5 6 eneral 1. General channel bed aggradation areas (bar formation) N/A N/A 0/0 2. Channel bed degradation - areas of increasing downcutting or headcutting? N/A N/A 0/0 1. Free of back or arm scour? N/A 0 0 2. Height appropriate? N/A 0 0 3. Angle and geometry appear appropriate? N/A 0 0 4. Free of piping or other structural failures? N/A 0 0 Boulders 1. Free of scour? N/A 0 0 2. Footing stable? N/A 0 0 0	D. Meanders	1. Outer bend in state of limited/controlled erosion?	9	9	ı	83	
3. Apparent Rc within spec? 6 6 4. Sufficient floodplain access and relief? 5 6 eneral 1. General channel bed aggradation areas (bar formation) N/A N/A 0/0 2. Channel bed degradation - areas of increasing downcutting or headcutting? N/A N/A 0/0 1. Free of back or arm scour? N/A 0 0 2. Height appropriate? N/A 0 0 3. Angle and geometry appear appropriate? N/A 0 0 4. Free of piping or other structural failures? N/A 0 0 Boulders 1. Free of scour? N/A 0 2. Footing stable? N/A 0 0		2. Of those eroding, # w/concomitant point bar formation?	9	9	0	•	
4. Sufficient floodplain access and relief? 5 6 eneral 1. General channel bed aggradation areas (bar formation) N/A N/A 0/0 2. Channel bed degradation - areas of increasing downcutting or headcutting? N/A N/A 0/0 1. Free of back or arm scour? N/A 0 0 2. Height appropriate? N/A 0 0 3. Angle and geometry appear appropriate? N/A 0 0 4. Free of piping or other structural failures? N/A 0 0 Boulders 1. Free of scour? N/A 0 2. Footing stable? N/A 0 0		3. Apparent Rc within spec?	9	9	0	100	
eneral 1. General channel bed aggradation areas (bar formation) N/A N/A 0/0 2. Channel bed degradation - areas of increasing downcutting or headcutting? 1. Free of back or arm scour? N/A 0/0 2. Height appropriate? N/A 0/0 3. Angle and geometry appear appropriate? N/A 0/0 4. Free of piping or other structural failures? N/A 0/0 6. Boulders 1. Free of scour? 0/1/A 0/0 7. Footing stable? N/A 0/0 8. Footing stable? N/A 0/0		4. Sufficient floodplain access and relief?	5	9	1	83	95%
2. Channel bed degradation - areas of increasing downcutting or headcutting? N/A N/A 0/0 1. Free of back or arm scour? N/A 0 2. Height appropriate? N/A 0 3. Angle and geometry appear appropriate? N/A 0 4. Free of piping or other structural failures? N/A 0 Boulders 1. Free of scour? 0 2. Footing stable? N/A 0	E. Bed General	1. General channel bed aggradation areas (bar formation)	A/N	A/N	0/0 feet	100	
or headcutting? N/A N/A 0/O 1. Free of back or arm scour? N/A 0 0 2. Height appropriate? N/A 0 0 3. Angle and geometry appear appropriate? N/A 0 0 4. Free of piping or other structural failures? N/A 0 0 Boulders 1. Free of scour? 0 N/A 0 2. Footing stable? N/A 0 N/A 0		2. Channel bed degradation - areas of increasing downcutting					
1. Free of back or arm scour? N/A 0 2. Height appropriate? N/A 0 3. Angle and geometry appear appropriate? N/A 0 4. Free of piping or other structural failures? N/A 0 6 Boulders 1. Free of scour? 0 2. Footing stable? N/A 0		or headcutting?	N/A	N/A	0/0 feet	100	100%
2. Height appropriate? N/A 0 3. Angle and geometry appear appropriate? N/A 0 4. Free of piping or other structural failures? N/A 0 1. Free of scour? N/A 0 2. Footing stable? N/A 0	F. Vanes		N/A	0	A/N	A/N	
3. Angle and geometry appear appropriate? N/A 0 4. Free of piping or other structural failures? N/A 0 1. Free of scour? N/A 0 2. Footing stable? N/A 0		2. Height appropriate?	N/A	0	N/A	A/N	
4. Free of piping or other structural failures? N/A 0 1. Free of scour? N/A 0 2. Footing stable? N/A 0		3. Angle and geometry appear appropriate?	N/A	0	N/A	A/N	
1. Free of scour? N/A 0 2. Footing stable? N/A 0		4. Free of piping or other structural failures?	N/A	0	N/A	N'A	N/A
0 N/A 0	G. Wads/ Boulders	1. Free of scour?	N/A	0	A/N	A/N	
		2. Footing stable?	N/A	0	N/A	N/A	N/A

PROJECT Beaverdam Creek D06054-C 3-YEAR Pool **Cross-Section** CROSS SECTION: FEATURE: 5/26/11 UT2 REACH TASK DATE 7.25 ft² 9.82 ft 0.74 ft 1.70 ft 13.27 8.27 Summary Data All dimensions in feet. Entrenchment Ratio Width/Depth Ratio Mean Depth Maximum Depth Bankfull Width Bankfull Area

Character Dodg			PROJECT	Beaverdam Creek
Summary Data All dimensions in feet				D06054-C
				3-YEAR
Bankfull Area	3.46 ft ²	TASK	Cross-Section	
Bankfull Width	6.99 ft	REACH	UT2	
Mean Depth	0.49 ft	DATE	5/26/11	
Maximum Depth	0.91 ft			
Width/Depth Ratio	14.27	,		
Entrenchment Ratio	5.08	V	SECTION:	7
Classification	Ü	Ecosystem	FEATURE:	Riffle
		Fillmarkement		

			PROJECT	PROJECT Beaverdam Creek	
Summary Data All dimensions in feet				D06054-C	
THE CHILDREN IN TOC.				3-YEAR	
Bankfull Area	8.07 ft²	TASK	Cross-Section		
Bankfull Width	12.5 ft	REACH	UT1		
Mean Depth	0.65 ft	DATE	05/26/11		
Maximum Depth	1.70 ft				
Width/Depth Ratio	19.23	,		,	
Entrenchment Ratio	8.47	V	CROSS SECTION:	ro.	
Classification	C	Prosvetem	FEATURE	Riffle	

			PROJECT	PROJECT Beaverdam Creek
Summary Data		=		D06054-C
All dimensions in feet.				3-YEAR
Bankfull Area	7.99 ft²	TASK	Cross-Section	
Bankfull Width	9.25 ft	REACH	UT1	
Mean Depth	0.86 ft	DATE	5/26/11	
Maximum Depth	1.67 ft			
Width/Depth Ratio	10.76	>	0000	
Entrenchment Ratio	10.58	V	SECTION:	3
		Ecosystem	FEATURE:	Pool
		Tanta mentalin		

PROJECT Beaverdam Creek D06054-C 3-YEAR Pool **Cross-Section** CROSS SECTION: FEATURE: 5/26/11 LT1 REACH TASK DATE 10.39 ft² 8.97 ft 1.16 ft 2.21 ft 7.73 9.70 All dimensions in feet. Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Width Bankfull Area Mean Depth

			PROJECT	Beaverdam Creek
Summary Data				D06054-C
All dilicipatolis ili 100t.				3-YEAR
Bankfull Area	9.64 ft²	TASK	Cross-Section	
Bankfull Width	10.41 ft	REACH	15	
Mean Depth	0.93 ft	DATE	05/26/11	
Maximum Depth	1.95 ft			
Width/Depth Ratio	11.19	,		(QI
Entrenchment Ratio	8.38	V	SECTION:	9
Classification	田	Fosystem	FEATURE	Riffle
		Filliarkement		

Summary Data
All dimensions in feet.

Bankfull Area21.34 ft²Bankfull Width18.14 ftMean Depth1.18 ftMaximum Depth2.53 ftWidth/Depth Ratio15.37Entrenchment Ratio7.15

PROJECT Beaverdam Creek

D06054-C
3-YEAR

TASK Cross-Section
REACH Mainstem
DATE 5/26/11

CROSS
FEATURE: Pool

Cross-section photo - looking across channel, from right bank to left bank

Beaverdam Creek D06054-C 3-YEAR Riffle **PROJECT Cross-Section** CROSS SECTION: FEATURE: Mainstem 05/26/11 REACH TASK DATE 17.71 ft² 16.38 ft 1.08 ft 1.93 ft 15.17 8.01 C All dimensions in feet. Entrenchment Ratio Width/Depth Ratio Maximum Depth Summary Data Bankfull Area Bankfull Width Classification Mean Depth

Beaverdam Creek Mainstem - Profile - Year 3 (May 25, 2011)

Beaverdam Creek Mainstem - Profile - Year 3 (May 25, 2011)

Unnamed Tributary 1 (to Beaverdam Creek) Profile - Year 3 (May 25, 2011)

Unnamed Tributary 1 (to Beaverdam Creek) Profile - Year 3 (May 25, 2011)

Unnamed Tributary 2 (to Beaverdam Creek) - Profile- Year 3 (May 25, 2011)

of Water

Channel

Surface

Unnamed Tributary 2 (to Beaverdam Creek) - Profile- Year 3 (May 25, 2011)

					DC4vel ua	Deaveruam Creek Restoration	- 1	EEF Froject No. Dubus4-C
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Reach		UTZ	X Sec
Silt/Clay	<0.062	41	89	89	Date		05/16/2011	Sta No.
Very Fine Sand	0.062-0.125	0	0	89				
Fine Sand	0.125-0.25	0	0	89			ITichornom	
Medium Sand	0.25-0.5	0	0	89	80		nistogram	
Coarse Sand	0.5-1.0	2	2	70	70			
Very Coarse Sand	1.0-2.0	0	0	70	09			
Very Fine Gravel	0 0-4 0	c	c	02	Range 40			
Fine Gravel	4.0-5.7	0	0	70	ni %			
Fine Gravel	5.7-8.0	0	0	70				
Medium Gravel	8.0-11.3	0	0	70	0		I	
Medium Gravel	11.3-16.0	-	2	72	0.062 0.25 1	***	16 32 64	64 128 256
Coarse Gravel	16.0-22.6	-	2	73			a more orea	()
Coarse Gravel	22.6-32	2	3	77		Particl	Particle Size Distribution	uo
Very Coarse Gravel	32-45	2	3	80	100			
Very Coarse Gravel		4	7	87	06			
Small Cobble	64-90	2	3	90	70			\ \
Small Cobble	90-128	ĸ	S	95				,
arge Cobble	128-180	2	3	86			\	
arge Cobble	180-256	4	2	100	vits!			
Small Boulder	256-362	0	0	100				
Small Boulder	362-512	0	0	100				
Medium Boulder	512-1024	0	0	100	20 10			
arge Boulder	1024-2048	0	0	100	0			
Bedrock	<2048	0	0	100	0.1	-	10	100 1000
·	Total	07	901				Particle Size (mm)	(M

5	٩			20	18	o 4	inge	sA ni	%	2	0	20			90 8	26 8	08 8		2 8	vitelu						
	% Cumulative	13	13	13	13	13	13	13	13	15	15	17	23	30	40	28	77	95	97	100	100	100	100	100	100	
	% in Range	13	0	0	0	0	0	0	0	2	0	2	7	7	10	18	18	18	2	3	0	0	0	0	0	
	Count	∞	0	0	0	0	0	0	0	1	0	1	4	4	9	Ξ	11	11	_	2	0	0	0	0	0	
υ.	Particle Size (mm)	<0.062	0.062-0.125	0.125-0.25	0.25-0.5	0.5-1.0	1.0-2.0	2.0-4.0	4.0-5.7	5.7-8.0	8.0-11.3	11.3-16.0	16.0-22.6	22.6-32	32-45	45-64	64-90	90-128	128-180	180-256	256-362	362-512	512-1024	1024-2048	<2048	
Pebble Count - Riffle	Material	Silt/Clay	Very Fine Sand	Fine Sand	Medium Sand	Coarse Sand	Very Coarse Sand	Very Fine Gravel	Fine Gravel	Fine Gravel	Medium Gravel	Medium Gravel	Coarse Gravel	Coarse Gravel	Very Coarse Gravel	Very Coarse Gravel	Small Cobble	Small Cobble	Large Cobble	Large Cobble	Small Boulder	Small Boulder	Medium Boulder	Large Boulder	Bedrock	

Beaverdam Creek Restoration EEP Project No. D06054-C

X Sec

UT2

Reach

Pebble Count - Riffle					Beaverdam Cr	Beaverdam Creek Restoration EEP	EEP Project No. D06054-C	14-C
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Reach	UTI	X Sec	Ì
Silt/Clay				0	Date	05/16/11	Sta No.	4+9
Very Fine Sand	0.062-0.125	0	0	0		Histogram	E	
Fine Sand	0.125-0.25	0	0	0	35	413016111		
Medium Sand	0.25-0.5	0	0	0	30			
Coarse Sand	0.5-1.0	0	0	0	25			
Very Coarse Sand	1.0-2.0	0	0	0				
Very Fine Gravel	2.0-4.0	0	0	0	M ni .			
Fine Gravel	4.0-5.7	0	0	0				
Fine Gravel	5.7-8.0	0	0	0	0			
Medium Gravel	8.0-11.3	0	0	0	0.062 0.25 1	4 8 16 Particle	16 32 64 128 Particle Size (mm)	256
Medium Gravel	11.3-16.0	2	3	3				
Coarse Gravel	16.0-22.6	63	5	∞		Particle Size Distribution	bution	
Coarse Gravel	22.6-32	S	∞	17	901			
Very Coarse Gravel	32-45	18	30	47	001			
Very Coarse Gravel	45-64	91	27	73	06 &			
Small Cobble	64-90	8	13	87	00 6			
Small Cobble	90-128	4	7	93				
Large Cobble	128-180	2	3	76				I
Large Cobble	180-256	-	2	86	ritelur 3 4			
Small Boulder	256-362	-	2	100				I
Small Boulder	362-512	0	0	100	20	7		
Medium Boulder	512-1024	0	0	100	10			
Large Boulder	1024-2048	0	0	100	0			=
Bedrock	<2048	0	0	100	0.1	1 10	100	1000
To	Totals	09	100		09C	Farticle Size (mm) D50= 47.37mm	e (mm) D84=84.8mm	8mm

256 512 2048

4+90.86

10000

Year 0 Year 2 Year 3

-Year 1

1ge % Cumulative 52 52 52 52 52 52 52 52	% in R ₄ (C C C C C C C C C C C C C C C C C C C
52 52 0 52 0 52 0 52 0 52	
52 52 52 52 52	
52 52 52 52	
52 52	
52	
52	
0 52	
0 S2 0	
0 52	
7 58	
0 58	
13 72	
7 78	
5 83	
7 90	
3 93	
5 98	
2 100	
0 100	
0 100	
0 100	
0 100	
0 100	
0 100	
100	

Pebble Count - Pool						Beaverdam Cre	Beaverdam Creek Restoration EEP	EEP Project No. D06054-C	54-C
Material	Particle Size (mm)	Count	% in Range	% Cumulative		Reach	UT1	X Sec	5
Silt/Clay	<0.062	13	22	22		Date	05/16/11	Sta No.	17+31.58
Very Fine Sand	0.062-0.125	0	0	22					
Fine Sand	0.125-0.25	0	0	22	Č		Histogram	ш	
Medium Sand	0.25-0.5	0	0	22	3				
Coarse Sand	0.5-1.0	6	5	27	- 02				
Very Coarse Sand	1.0-2.0	0	0	27	15				
Very Fine Gravel	2.0-4.0	0	0	27				, III	
Fine Gravel	4.0-5.7	0	0	27	ni %		1/2_		
Fine Gravel	5.7-8.0	0	0	27	Ś	P			
Medium Gravel	8.0-11.3	_	2	28	0				
Medium Gravel	11.3-16.0	8	S	33	0	0.062 0.25 1	4 8 16 Selection 16	16 32 64 128 Particle Size (mm)	256 512 2048
Coarse Gravel	16,0-22,6	∞	13	47					
Coarse Gravel	22.6-32	11	18	99			Particle Size Distribution	ibution	
Very Coarse Gravel	32-45	∞	13	78	=	100			
Very Coarse Gravel	45-64	9	10	88		06			
Small Cobble	64-90	5	∞	67		- 08			
Small Cobble	90-128	-	2	86		70			
Large Cobble	128-180	0	0	86		09			Veger 1
Large Cobble	180-256	-	2	100	avite	50	1		Year 0
Small Boulder	256-362	0	0	100		40			Year 2
Small Boulder	362-512	0	0	100		900			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Medium Boulder	512-1024	0	0	100		70			
Large Boulder	1024-2048	0	0	100					
Bedrock	<2048	0	0	100		0.1	1 10	100	1000 10000
Tc	Totals	09	100			D50=	Particle Size (mm) D50= 24.31mm	ze (mm) D84=55.77mm	.77mm

Pebble Count - Riffle					Beav	erdam Cre	Beaverdam Creek Restoration EEP	EEP Project No. D06054-C	54-C
Material	Particle Size (mm)	Count	% in Range	% Cumulative	~	Reach	UT1	X Sec	9
Silt/Clay	<0.062	1	2	2		Date	05/16/11	Sta No.	17+62.09
Very Fine Sand	0.062-0.125	0	0	2			100		
Fine Sand	0.125-0.25	0	0	2	30		HISTOGRAM	ш	
Medium Sand	0.25-0.5	0	0	2	30				
Coarse Sand	0.5-1.0	0	0	2	3				
Very Coarse Sand	1.0-2.0	0	0	2	50 38e				
Very Fine Gravel	2.0-4.0	0	0	2	15 T T T T T T T T T T T T T T T T T T T				
Fine Gravel	4.0-5.7	1	2	3	01 %				
Fine Gravel	5.7-8.0	0	0	3	5				
Medium Gravel	8.0-11.3	-	2	5	0				
Medium Gravel	11.3-16.0	1	2	7	0.062	0.25 1	4 8 16 Control	16 32 64 128	256 512 2048
Coarse Gravel	16.0-22.6	5	∞	15				Size (mini)	
Coarse Gravel	22.6-32	111	18	33			Particle Size Distribution	oution	
Very Coarse Gravel	32-45	6	15	48	100				
Very Coarse Gravel	45-64	17	28	77	06				
Small Cobble	64-90	11	18	95	80				
Small Cobble	90-128	-	2	26) 10 10				
Large Cobble	128-180	-	2	86	1i4 %				
Large Cobble	180-256	-	2	100					Year 0
Small Boulder	256-362	0	0	100					Year 2
Small Boulder	362-512	0	0	100			\		L rear 3
Medium Boulder	512-1024	0	0	100	20				
Large Boulder	1024-2048	0	0	100	or o		1		
Bedrock	<2048	0	0	100	0.1	1	10	00	1000 10000
To	Totals	09	100			D20=	Particle Size (mm) D50= 46.12mm		D84=74.24mm

Name Country Scientific Size (mm) Country Scientific Size (mm) Country Scientific Size (mm) Scient	Pebble Count - Pool						Beaverdam Cro	Beaverdam Creek Restoration EEP	EEP Project No. D06054-C	54-C	
Sand 0.062-0.125 26 4.3 4.	Material	Particle Size (mm)		% in Range	% Cumulative		Reach	Beaverdam Creek	X Sec	7	
Sand 0.062-0.125 0 0 4.3	Silt/Clay	<0.062		43	43		Date	05/16/11	Sta No.	1+35.96	
Sind 0,125-0.55 0 0 4.3 4.5	Very Fine Sand	0.062-0.125	0	0	43						
Sand 0.25-0.5 0 0 4.3 4.0	Fine Sand	0.125-0.25	0	0	43			Histogra	ш		
and 0.5-1.0 0 0 43 40 40 40 40 40 40 40 40 40 40 40 40 40	Medium Sand	0.25-0.5	0	0	43	50					
Columbia 1,0-2,0 0 0 43 15 15 15 15 15 15 15 1	Coarse Sand	0.5-1.0	0	0	43	40					
Section 2.04-0 0 43 Section 2.04-0 1 2 45 Section 2.04-0 1 2 45 Section 2.062 0.25 1 4 8 Section 2.062 0.25 1 4 8 Section 2.062 0.25 1 4 8 Section 2.04-204 2 8 100 10	Very Coarse Sand	1.0-2.0	0	0	43						
Second 4,0-5,7 0 0 43 15 15 15 15 15 15 15 1	Very Fine Gravel	2.0-4.0	0	0	43						
Single S	Fine Gravel	4.0-5.7	0	0	43						
Gravel 8.0-11.3 2 3 48 5 5 0 0.062 0.25 1 4 8 16 32 64 128 Gravel 11.3-16.0 1 2 5.0 0 0.062 0.25 1 4 8 16 32 64 128 Figure 12.6-32 4 7 7 73	Fine Gravel	5.7-8.0	-	2	45						
Gravel 11.3-16.0 1 2 50 0.062 0.25 1 4 8 16 32 64 128 riewel 16.0-22.6 10 17 67 7 73 Farticle Size Distribution riewel 22.6-32 4 7 7 73 Farticle Size Distribution riewel 32-45 6 10 83 92 80 90 bble 64-90 5 8 100 80 90 90 bble 128-180 0 0 100 100 100 100 bble 180-256 0 0 100 100 100 100 bble 102-1024 0 0 100 100 100 100 conder 1024-2048 0 100 100 100 100 100 cond 2048 0 100 100 100 100 100	Medium Gravel	8.0-11.3	2	60	48	9 0					
150-22.6 10 17 67 10 17 67 10 17 67 10 17 67 10 17 10 17 10 10 10 1	Medium Gravel	11.3-16.0	-	2	50	0				256 512 20	2048
ravel 22.6-32 4 7 73 arse Gravel 32-45 6 10 83 arse Gravel 45-64 5 8 92 bble 64-90 5 8 100 bble 90-128 0 0 100 bble 128-180 0 0 100 bble 180-256 0 0 100 bble 180-256 0 0 100 bble 362-512 0 0 100 bulder 362-512 0 0 100 Coulder 1024-2048 0 0 100 Coulder 100 0 0 0 Cold 0 0 0 0 100 0 0 0 0 20 0 0 0 0 0 20 0 0 0 0 0 20	Coarse Gravel	16.0-22.6	10	17	29						
100 100	Coarse Gravel	22.6-32	4	7	73			Particle Size Distri	bution		
arse Gravel 45-64 5 8 92 obble 64-90 5 8 100 obble 90-128 0 0 100 obble 128-180 0 0 100 obble 180-256 0 0 100 obble 180-256 0 100 oulder 362-512 0 0 100 Boulder 512-1024 0 0 100 conder 100 0 100 conder 100 0 100	Very Coarse Gravel	32-45	9	10	83		00				F
bble 90-128 0 100 8 100 bble 128-180 0 0 100 100 bble 180-256 0 0 100 100 ulder 256-362 0 0 100 100 Boulder 362-512 0 0 100 20 Boulder 512-1024 0 0 100 0 coulder 1024-2048 0 0 100 0 conder 100 0 0 0 0	Very Coarse Gravel	45-64	5	∞	92		06				
bble 128-180 0 0 100	Small Cobble	64-90	5	∞	100		08				_
bble 128-180 0 0 100 % 50 highlight black of the state of	Small Cobble	90-128	0	0	100	əu	70				
bulder 256-362 0 0 100	Large Cobble	128-180	0	0	100	.iч %	/ 09			Year 1	-tr-
vulder 256-362 0 0 100 bulder 362-512 0 0 100 Boulder 512-1024 0 0 100 vulder 1024-2048 0 0 100 Totals 20 100 0 100 Particle Size (mm) Particle Size (mm)	Large Cobble	180-256	0	0	100	ative	20 20	1		Year 0	
Boulder 512-1024 0 0 100 10 10 10 20 10 100 10 100 100 1	Small Boulder	256-362	0	0	100	լուսո	40			Year 2	
Boulder 512-1024 0 0 100 10 10 10 10 10 10 100 100 100 100 100 100 100 100 Particle Size (mm) Particle Size (mm)	Small Boulder	362-512	0	0	100	o	30				'
1024-2048	Medium Boulder	512-1024	0	0	100		07				
2048 0 0 100 100 100 100 100 100 100 100 10	Large Boulder	1024-2048	0	0	100						
Particle Size (mr	Bedrock	<2048	0	0	100			10 10	100	1000	10000
001 000	Tot	Totals	99	100			D50= 16mm		e (mm) D84=46.53mm		

					Booyondom C.	Reavendern Creek Besterestion FFD	FFD Project No. D06064.C	2
Pebble Count - Riffle					Deaverualli Cr	- 1	rroject No. Dooo	ا ر
Material	Particle Size (mm)	Count	% in Range	% Cumulative	Reach	Beaverdam Creek	X Sec	
Silt/Clay	<0.062	3	5	5	Date	05/16/11	Sta No.	1+7
Very Fine Sand	0.062-0.125	0	0	5				
Fine Sand	0.125-0.25	0	0	5		Histogram	m a	
Medium Sand	0.25-0.5	-	2	7	40	and the same of th		
Coarse Sand	0.5-1.0	0	0	7	35			
Very Coarse Sand	1.0-2.0	0	0	7	30			
Very Fine Gravel	2.0-4.0	0	0	7	nge 20			
Fine Gravel	4.0-5.7	0	0	7	n Ra			
Fine Gravel	5.7-8.0	0	0	7	01		I	
Medium Gravel	8.0-11.3	2	3	10	2			١,
Medium Gravel	11.3-16.0	∞	13	23	0.062 0.25	4 8 16	32 64 128	256
Coarse Gravel	16.0-22.6	3	5	28			Particle Size (mm)	
Coarse Gravel	22.6-32	21	35	63		Particle Size Distribution	oution	
Very Coarse Graval	32-45	∞	13	77	100			
Very Coarse Gravel	45-64	9	10	87	06			
Small Cobble	64-90	S	∞	95	- 08			
Small Cobble	90-128	2	3	86	- 70 - 40		*	
Large Cobble	128-180		2	100	oni71 &			
Large Cobble	180-256	0	0	100	tive %			<u> </u>
Small Boulder	256-362	0	0	100				
Small Boulder	362-512	0	0	100				
Medium Boulder	512-1024	0	0	100	07			
Large Boulder	1024-2048	0	0	100				
Bedrock	<2048	0	0	100	0.1	10 10	00	1000
To	Totals	09	100		3G	Farticle Size (mm) D50= 28.42mm		D84=58.93mm

BF 1 Crest gage at 5+50 on UT1 (Year 1). (EMH&T, 4/8/09)

BF 2 Crest gage at 5+50 on UT1 (Year 2). (EMH&T, 9/19/10)

BF 3 Crest gage at 5+ 50 on UT1 (Year 3). (EMH&T, 5/16/11)

BF 4
Crest gage at 3+80 on Beaverdam Creek Mainstem and 22+75 on UT1, at the confluence of the two reaches (Year 1).

(EMH&T, 4/8/09)

BF 5
Crest gage at 3+80 on Beaverdam Creek Mainstem and 22+75 on UT1, at the confluence of the two reaches (Year 2).

(EMH&T, 9/19/10)

BF 6
Crest gage at 3+80 on Beaverdam Creek Mainstem and 22+75 on UT1, at the confluence of the two reaches (Year 3).

(EMH&T, 5/16/11)

SPA 1 Steep banks and bank scour along an outer meander bend on UT1 near station 4+20.

Situation has improved over the past year.

(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).

(EMH&T)

SPA 2
Steep bank with bank shear along an outer meander bend on UT1 near station 0+75.
Concern for stability if vegetation does not develop. Stability has improved over the past year with an increased density of bank vegetation.

(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11). (EMH&T)

SPA 3
Bank scour and bare bank along an outer meander bend on UT2 near station 2+50.
Concern for stability and increased stream aggradation if vegetation does not develop.
(Top Photo – Year 2: 9/19/10, Bottom Photo – Year 3: 9/13/11).
(EMH&T)

